Speed of Sound In QCD Plasma

Rajiv Gavai, Sourendu Gupta, Swagato Mukherjee

Tata Institute of Fundamental Research

Mumbai

Introduction

The QCD plasma, created in heavy-ion collisions, may contain long wavelength oscillations, like sound waves, near equilibrium if its viscosity is small enough.

The QCD plasma, created in heavy-ion collisions, may contain long wavelength oscillations, like sound waves, near equilibrium if its viscosity is small enough.

These sound waves in a QCD plasma near equilibrium may affect its particle spectrum and can be observed.

Continuum limit of speed of sound in plasma phase of quenched QCD theory.

Action

Wilson action on an asymmetric lattice :

 $S(U) = 2N_c K_s P_s + 2N_c K_\tau P_\tau$

$$K_s \equiv \frac{1}{\xi g_s^2}$$
 $K_\tau \equiv \frac{\xi}{g_\tau^2}$ $\xi = \frac{a_s}{a_\tau}$

Thermodynamics

Partition function :

$$\mathcal{Z} = \int \mathcal{D}U e^{-S(U)}$$

Energy density :

$$E = \frac{T^2}{V} \frac{\partial \ln \mathcal{Z}}{\partial T} \Big|_V$$

$$P = T \frac{\partial \ln \mathcal{Z}}{\partial V} \Big|_T$$

Energy density

Energy density :

$$\frac{E}{T^4} = 6N_c N_\tau^4 \left[\frac{\Delta_s - \Delta_\tau}{g^2} - \left(\frac{c'_s \Delta_s}{g} + \frac{c'_\tau}{\sigma} \Delta_\tau \right) \right]$$

where :

$$\Delta_j = \langle \bar{P}_j \rangle - \langle \bar{P}_0 \rangle$$

Energy density

Energy density :

$$\frac{E}{T^4} = 6N_c N_\tau^4 \left[\frac{\Delta_s - \Delta_\tau}{g^2} - \left(\frac{c'_s \Delta_s + c'_\tau \Delta_\tau}{g} \right) \right]$$

where :

$$\Delta_j = \langle \bar{P}_j \rangle - \langle \bar{P}_0 \rangle$$

Karsch coefficients, evaluated upto one loop order :

$$g_i^{-2}(a_s,\xi) = g^{-2}(a) + c_i(\xi) + O[g^2(a)]$$

Specific heat

Specific heat at constant volume :

$$\frac{C_v}{T^3} = \frac{1}{T^3} \frac{\partial E}{\partial T} =$$

$$\frac{4E}{T^4} - 6N_c N_\tau^4 \Big[2g^{-2}\Delta_\tau + 4c'_\tau \Delta_\tau + (c''_s \Delta_s + c''_\tau \Delta_\tau) \Big] + \\ 36N_c^2 N_s^3 N_\tau^5 \Big[g^{-4} var(\Delta_s - \Delta_\tau) + \\ g^{-2} var(c_s' \Delta_s + c'_\tau \Delta_\tau, \Delta_s - \Delta_\tau) + var(c'_s \Delta_s + c'_\tau \Delta_\tau) \Big]$$

Specific heat

Specific heat at constant volume :

$$\frac{C_v}{T^3} = \frac{1}{T^3} \frac{\partial E}{\partial T} =$$

$$\frac{4E}{T^4} - 6N_c N_\tau^4 \left[2g^{-2}\Delta_\tau + 4c_\tau' \Delta_\tau + (c_s'' \Delta_s + c_\tau'' \Delta_\tau) \right]$$

Specific heat

Specific heat at constant volume :

$$\frac{C_v}{T^3} = \frac{1}{T^3} \frac{\partial E}{\partial T} =$$

$$\frac{4E}{T^4} - 6N_c N_\tau^4 \left[2g^{-2}\Delta_\tau + 4c'_\tau \Delta_\tau + (c''_s \Delta_s + c''_\tau \Delta_\tau) \right]$$

$$c_s''(\xi = 1) = -0.298192$$

 $c_\tau''(\xi = 1) = 0.333674$

C_v **Results**

C_v **Results**

Speed of sound :

$$C_s^2 = \frac{\partial P}{\partial E}\Big|_s = \frac{1}{3} - \frac{1}{3} \cdot \frac{\frac{1}{T^3} \left(\frac{\partial D}{\partial T}\right)_V}{\frac{1}{T^3} \left(\frac{\partial E}{\partial T}\right)_V}$$

Speed of sound :

$$C_s^2 = \frac{\partial P}{\partial E}\Big|_s = \frac{1}{3} - \frac{1}{3} \cdot \frac{\frac{1}{T^3} \left(\frac{\partial D}{\partial T}\right)_V}{\frac{1}{T^3} \left(\frac{\partial E}{\partial T}\right)_V}$$

Interaction measure :

$$\frac{D}{T^4} = \frac{E - 3P}{T^4} = 6N_c N_\tau^4 \left(a \frac{\partial g^{-2}}{\partial a}\right) (\Delta_s + \Delta_\tau)$$

Speed of sound :

$$C_s^2 = \frac{\partial P}{\partial E}\Big|_s = \frac{1}{3} - \frac{1}{3} \cdot \frac{\frac{1}{T^3} \left(\frac{\partial D}{\partial T}\right)_V}{\frac{1}{T^3} \left(\frac{\partial E}{\partial T}\right)_V}$$

Speed of sound :

$$C_s^2 = \frac{\partial P}{\partial E}\Big|_s = \frac{1}{3} - \frac{1}{3} \cdot \frac{\frac{1}{T^3} \left(\frac{\partial D}{\partial T}\right)_V}{\frac{1}{T^3} \left(\frac{\partial E}{\partial T}\right)_V}$$

Derivative of interaction measure :

$$\frac{1}{T^3}\frac{\partial D}{\partial T} = \frac{4D}{T^4} - 12N_c N_\tau^4 \left(a\frac{\partial g^{-2}}{\partial a}\right)\Delta_\tau$$

Lattice sizes

G.Boyd et al., Nucl. Phys., B 469 (1996) 419.

Lattice sizes

G.Boyd et al., Nucl. Phys., B 469 (1996) 419.

Lattice sizes

G.Boyd et al., Nucl. Phys., B 469 (1996) 419.

P vs E

• We have determined the continuum limits of C_v and C_s^2 , with less than 5% errors, for the plasma phase of quenched QCD theory using <u>one loop order</u> perturbative couplings.

- We have determined the continuum limits of C_v and C_s^2 , with less than 5% errors, for the plasma phase of quenched QCD theory using <u>one loop order</u> perturbative couplings.
- N_{τ} are chosen such that the non-perturbative and one loop order perturbative β -functions agree.

- We have determined the continuum limits of C_v and C_s^2 , with less than 5% errors, for the plasma phase of quenched QCD theory using <u>one loop order</u> perturbative couplings.
- N_{τ} are chosen such that the non-perturbative and one loop order perturbative β -functions agree.
- At T = 3Tc the continuum limit of C_v differs form its value for the ideal gas by 4% with 80% confidence limit.

- We have determined the continuum limits of C_v and C_s^2 , with less than 5% errors, for the plasma phase of quenched QCD theory using one loop order perturbative couplings.
- N_{τ} are chosen such that the non-perturbative and one loop order perturbative β -functions agree.
- At T = 3Tc the continuum limit of C_v differs form its value for the ideal gas by 4% with 80% confidence limit.
- At T = 3Tc the continuum limit of C_s^2 differs form its value for the ideal gas by 9% with 99% confidence limit.

