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1. Outline: Quivers and DLCQ

• In light-cone quantization of strings, it is often useful to compactify a null

direction.

This leads to Discrete Light Cone Quantization (DLCQ) of the string theory.

In this description, the theory splits into sectors labelled by a discrete value

of the quantized light-cone momentum.

Interacting strings carry these quantized light-cone momenta, with the

minimal momentum being carried by a “string bit”.

Such a program, for the gauge theory/pp-wave correspondence, could lead

to a better understanding of string interactions .
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• The setting for the present talk is type IIB string theory, which admits

supersymmetric solutions of the type AdS5 × M5 where M5 is a Sasaki-

Einstein space.

• Unfortunately, the pp-wave metric, as usually derived from AdS5 × M5,

describes a noncompact null direction x−.

ψ

Equator of M5
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• In this talk, I will show that there is a novel scaling limit of a particular AdS

background, in which one ends up with a pp-wave with a compact light-cone

direction.

The radius of the null direction is a finite, controllable parameter of this

background.

• This particular AdS background has a dual 4d conformal gauge theory. The

above scaling limit will act on this gauge theory, leading to a dual gauge

theory/pp-wave pair.

• In the gauge theory, our scaling limit will play a role similar to the now-

familiar double scaling limit in the usual BMN picture:

N →∞, J →∞,
J√
N

fixed

except that our limit will be taken on the theory rather than on the

observables under study.
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• The gauge theory in question is an N = 2 superconformal “moose” or

“quiver” theory in the large moose limit.
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• Several fascinating aspects of the gauge theory/pp-wave correspondence will

emerge as we explore this background.

We will find gauge theory operators that can be identified with a string

ground state in every sector of fixed DLCQ momentum k.

We will also find operators that describe modes of the string winding m

times on the DLCQ direction.

These operators satisfy the relation

∑

i
ni = L0 − L0 = km

• The DLCQ theory can be T-dualized into a type IIA/M-theory background

which describes a non-relativistic string/membrane bound in a harmonic-

oscillator potential.

Thus, the gauge theory “deconstructs” nonrelativistic IIA/M-theory in this

limit.



[9]

2. Setting: Large Quiver Theories and PP Wave Limit

• The gauge theory that we will study is obtained by placing N1 D3-branes

transverse to the 6-dimensional space R2 × (C2/ZN2
).

• The orbifold group ZN2
acts on R2 × C2 by:

(z1, z2, z3) → (z1, ωz2, ω
−1z3), ω = e

2πi
N2

• The theory on the brane world-volume is a N = 2 superconformal field

theory in four dimensions.

• The R-symmetry group is U(1)R × SU(2)R.

• The gauge group is SU(N1)
(1) × SU(N1)

(2) × · · ·SU(N1)
(N2).

• The fields in the vector multiplet for each factor of the gauge group are

denoted (AµI , ΦI , ΨaI), with I = 1, 2, . . . , N2 and a = 1, 2.
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• In addition, there are hypermultiplets (AI , BI , χaI).

• For fixed index I, the AI and BI are bi-fundamentals of SU(N1)
(I) ×

SU(N1)
(I+1):

AI : (1, . . . , N1, N1, . . . , 1), BI : (1, . . . , N1, N1, . . . , 1)

• This can be represented

in a “moose” or “quiver”

diagram:

B A

A

I

I+1

B

B

I−1A

I+1

I−1

ΦI−3 ΦI−1

I



[11]

• The holographic dual is type IIB string theory on AdS5 × S5/ZN2
.

• The AdS5 space has a radius given by:

R2 =
√
4πgB

s α′2N1N2

where gB
s is the type IIB string coupling.

• We are interested in a scaling limit when both N1 and N2 become large

together, with the ratio N1/N2 fixed.

• We will see that N2 → ∞ is like the “continuum limit” J → ∞ (cf.

Maldacena’s talk).
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• To obtain the Penrose limit, one has to focus on the trajectory of a lightlike

worldline based at the origin of AdS5.

• Because of the singular nature of the compact manifold, the result depends

on the choice of this trajectory.

• We parametrize the complex coordinates of the transverse space in terms of

angles:

z1 = R sin α eiθ, z2 = R cos α cos γ eiχ, z3 = R cos α sin γ eiφ

• The orbifold is obtained by demanding that χ and φ are periodic modulo

2π, and in addition have a combined periodicity under

χ → χ +
2π

N2
, φ → φ− 2π

N2
.
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• Now we can write the metric of AdS5 × S5/ZN2
:

ds2 = R2
[
− cosh2 ρdt2 + dρ2 + sinh2 ρ dΩ2

3

+ dα2 + sin2 α dθ2 + cos2 α
(
dγ2 + cos2 γ dχ2 + sin2 γ dφ2

) ]

• To take the pp-wave limit, define new coordinates r, x, y by:

r = ρR, x = αR, y = γR

and introduce the lightcone coordinates

x+ =
1

2
(t + χ) , x− =

R2

2
(t− χ)

• In the limit R →∞ the metric reduces to

ds2 = −4dx+dx− − (r2 + x2 + y2) dx+2
+ dr2 + r2dΩ2

3

+ dx2 + x2dθ2 + dy2 + y2dφ2

= −4dx+dx− − 8∑

i=1
(xi)2 dx+2

+
8∑

i=1
dxi2
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• Although we obtained the standard pp-wave metric in the Penrose limit,

there is actually an important difference: the lightlike direction x− is

compact.

• To see this, note that the combined periodicity of the angles χ, φ translates

into the following periodicity on the new coordinates:

x+ → x+ +
π

N2
, x− → x− +

πR2

N2
, φ → φ− 2π

N2

• Since R2 =
√
4πgB

s α′2N1N2, we find that:

R2

N2
= 2α′

√√√√√πgB
s

N1

N2
≡ 2R−

Thus as N1, N2 →∞ together, x− is periodic with period 2πR−, where:

R− ≡ α′
2

gYM

√√√√√
N1

N2
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• Since the lightlike direction x− is periodic, the corresponding light-cone

momentum p+ is quantized in units of 1
R− .

• In other words, we are doing a Discrete Light-Cone Quantization (DLCQ)

of the string on a pp-wave background.

• As is well-known, the theory then splits into sectors, labelled by the discrete

number of light-cone quanta k. This is always a positive integer.

• There can also be winding modes of the string on the null direction, which

we label by an integer m.

k m

Momentum Winding
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3. Proposal: Gauge Theory Description of DLCQ String

• We now address the construction of string states in the DLCQ pp-wave
background starting from the moose/quiver gauge theory.

• The first step is to identify the desired quantum numbers. Recall that

H = 2p− = ∆− Jχ

where Jχ generates rotations of the angle χ that appears in:

x+ =
1

2
(t + χ), x− =

R2

2
(t− χ)

• What is this generator in the gauge theory? It is easy to see that

Jχ = N2J + J ′

where

J : AI → e
iβ

2N2AI , BI → e
− iβ

2N2BI (global non−R symmetry)

J ′ : AI → e
iβ
2 AI , BI → e

iβ
2 BI (R−symmetry)
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• Thus we have:
H = 2p− = ∆−N2J − J ′

2p+ =
∆ + N2J + J ′

R2

• Note that the fundamental fields have no anomalous dimensions in this
theory. So the dimensions ∆ are their free-field values.

• Thus we find:

∆ J J ′ H

AI 1 1
2N2

1
2 0

BI 1 − 1
2N2

1
2 1

ΦI 1 0 0 1

AI 1 − 1
2N2

−1
2 2

BI 1 1
2N2

−1
2 1

ΦI 1 0 0 1
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• Now we can construct the gauge theory operator that corresponds to the
ground state of the dual string theory.

• It must have H = 0, therefore it has to be constructed out of the AI alone.

• As these fields are bi-fundamentals, the simplest gauge-invariant operator
that can be made out of them is:

tr (A1A2 · · ·AN2
)

• This operator has H = 0 and ∆ = N2. This implies that

2p+ = 2
N2

R2 =
1

R−

• Hence we can identify it with the string ground state in the sector with one
unit of DLCQ momentum (and no winding):

|k = 1,m = 0〉 =
1√N tr (A1A2 · · ·AN2

)
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• Pictorially, this operator is a “string” of fields that are “winding” around the

quiver diagram.

A

A

I

I+1

A I−1

• But in the string theory this is a momentum state!

We will see later that this has a beautiful physical interpretation.
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• Now it is easy to construct all the DLCQ momentum states. We have:

|k, m = 0〉 =
1√
N k

tr (A1A2 · · ·AN2
)k

for any positive integer k. They all have H = 0.

• For example, the state |k = 2,m〉 looks like:

A

A

I

I+1

I−1A

AI−1

A I

A I+1
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• The next step is to construct the zero-mode string oscillator states. These

should have light-cone Hamiltonian H = 1.

• From the table, it is clear that we can admit precisely one insertion of:

ΦI , ΦI , BI , BI

each of which has H = 1.

• The representations of these fields:

Φ : adjoint, B : bi−fundamental

constrain what gauge-invariant operators can be written down.
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• Some of the H = 1 operators constructed in this way are illustrated as

follows:

A

A

I

I+1

AI−1
AI−1

AI

AI+1

Φ Φ
_

I

Insertion of Φ ΦInsertion of
_



[23]

• For example, on the k = 1 DLCQ ground state we can build the operator:

tr (A1A2 · · ·AI−1ΦIAI · · ·AN2
)

• Invariance under the orbifold group ZN2
is achieved by summing over the

insertion point. Thus we propose:

a
†
Φ,0|k = 1,m = 0〉 ∼

N2∑

I=1
tr (A1A2 · · ·AI−1ΦIAI · · ·AN2

)

and similarly for Φ, AIBI , BI .

• Another four are given by:

∂i tr (A1A2 · · ·AN2
)

Thus for k = 1, we have identified the 8 zero-mode bosonic oscillators of

the string. For general k, the construction is analogous.
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• String oscillators with nonzero mode number can be obtained by inserting

phases.

• However, we will see that in our model, this automatically introduces winding

states as well.

• In DLCQ string theories, it is well-known that the constraint L0 − L0 = 0

is replaced, in the sector of momentum k and winding m, by:

L0 − L0 = km

• This leads to the identification:

a
†
Φ,m|k=1,m〉 =

N2∑

I=1
tr (A1A2 · · ·AI−1ΦIAI · · ·AN2

) ωmI

where

ω = e
2πi
N2
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• The general winding state in the sector of DLCQ momentum 1 is then:

M∏

i=1
a
†
Φ,ni

|k=1,m〉 =
N2∑

lM≥···≥l2≥l1

tr (A1 · · ·Al1−1Φl1 · · ·Ali−1ΦliAli · · ·AN2
) ω

∑
nili

where the winding number m is defined as the sum of the mode numbers

ni:

m ≡ ∑

i
ni.

• The gauge theory operators that describe the sector with DLCQ momentum

k > 1 are generalizations of the above. For example,

a
†
Φ,n|k=2,m〉 =

2N2∑

I=1
tr (A1 · · ·AI−1ΦIAI · · ·AN2

A1A2 · · ·AN2
) ωnI

where now

ω = e
2πi
2N2 and m =

n

2
It is easy to show that the above state vanishes for odd n, an important

consistency check.
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• We see that the DLCQ winding states, represented as gauge theory

operators, look like momentum states on the large moose.

• And we already saw that the DLCQ momentum states look like winding

states on the large moose.

• This is suggestive of T-duality.
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4. Dual: Non-Relativistic Strings and Membranes

• One can gain more insight into our construction by performing a T-duality
over the lightlike DLCQ direction.

• The periodicity of the x− direction is a remnant of the combined periodicities
in the angles χ and φ, exhibited earlier.

• Before taking the limit N1, N2 →∞, the periodic direction was space-like.
Hence one can perform a T-duality along this direction.

• Let us go back to the original AdS5 × S5/ZN2
metric and write down only

the terms in the t and χ directions (i.e., ignoring the transverse space):

ds2 = R2
[
− cosh2 ρ dt2 + cos2 α cos2 γ dχ2

]

• Now we make the original replacements for χ, ρ, α, γ in terms of the pp-
wave-adapted coordinates:

x− =
R2

2
(t− χ) , r = ρR, x = αR, y = γR
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• We do not yet take the limit R →∞, so the metric becomes:

ds2 = R2
(
cos2

w

R
cos2

y

R
− cosh2 r

R

)
dt2 − 4 cos2

w

R
cos2

y

R
dt dx−

+
4

R2 cos2
w

R
cos2

y

R
(dx−)2

• This procedure has introduced a small g−− in the metric, and we can now

T-dualize. We end up with the metric:

ds2 = −R2 cosh2 r

R
dt2 +

R2

cos2 w
R cos2 y

R
(dx9)2

along with a B-field and dilaton:

Bt 9 = −R2, gA
s =

√
α′R

R− cos w
R cos y

R

Here 2x9 is the T-dual of x−.
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• Note that x9 now has period 2π α′
R− , with as before:

R− =
α′
2

gYM

√√√√√
N1

N2

• There are also Ramond-Ramond fields that we do not write here.

• Evidently some components of the metric, and the B-field and string

coupling, become infinite as R →∞.

• However, string propagation on this background is finite. The reason is that

the B-field is a critical electric field and cancels the leading divergent piece

in the string world-sheet action:

√
−det(g) + B = R2 cosh r

R
cos w

R cos y
R
−R2 ' 1

2

8∑

i=1
(xi)2 +O


 1

R2




• This is just the non-relativistic string propagating in a background with a

Newtonian potential of harmonic-oscillator type.
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• It is well-known that in a critical electric field with the above scaling, closed

strings winding in the direction of the field are light, while the others are are

heavy.

• So the non-relativistic closed string (NRCS) that we have arrived at, has

only positive windings over the circle.

• The interpretation of our gauge-theory operators winding round the moose

is now clear. They are deconstructing these winding states of the NRCS:

A

A

I

I+1

A I−1

Operators winding
around moose

NR string winding
around spatial circle

x 9
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• The string of A’s had vanishing energy for any winding number, like the

light winding strings of NRCS theory.

• The string of A’s winding the other way gives infinitely energetic states as

N2 →∞, like the NRCS strings winding the wrong way.

• Insertions of phases give the (quantized) momentum states of the NR closed

string on x9. These can have either sign of momentum.
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5. Comments: Parameters and Couplings

(i) Effective ’t Hooft coupling:

In the N = 4 case, this is:

λ′ = g2
YMN

J2

In the quiver theory we expect:

N → N1N2, J → kN2

hence

λ′ = g2
YM

k2

N1

N2
=


2R−

k



2

where we recall that

R− ≡ 1

2
gYM

√√√√√
N1

N2
(in α′ = 1 units)
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(ii) Genus expansion parameter:

In the N = 4 theory, this is:

g2 =
J2

N
In the quiver theory, the corresponding object should be:

g2 = k2 N2

N1
∼ N2

N1

This can be checked directly by computing all-genus correlators in the free

quiver gauge theory. For example, one finds:

〈0|tr (A1A2 . . . AN2
)k tr (AN2

AN2−1 . . . A1)
k′|0〉 =

δk,k′
|x|2N2

k∑

l=1




Γ(N1 + l)

Γ(N1 + l − k)



N2
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As N1, N2 →∞ with fixed ratio, this reduces to:

δk,k′
|x|2N2

× 2

k
2∑

l=1
cosh



(l − (k + 1)

2
) k

N2

N1





This has an expansion in powers of


N2

N1



2

as expected.
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(iii) Effective coupling:

In the N = 4 theory there is a combination that describes the effective
coupling between states of the same ∆− J (at small λ′):

geff = g2

√
λ′ = gYM

J√
N

The corresponding effective coupling in the quiver case would then be:

geff = gYM k

√√√√√
N2

N1

Let us compare this with the type IIA NR closed string coupling, given by
the familiar (NCOS) formula:

gNR = g2
NCOS = gA

s

√√√√√√
det(g + B)

det g

If we evaluate this on our background, we find a spatially varying coupling:

gNR =
gB
s

R−

√√√√√√
8∑

i=1
(xi)2
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• Since the string is trapped in a harmonic potential, the states are confined

to a finite region, and the coupling constant will reduce to:

gNR ∼ gB
s

R−
∼ gYM

√√√√√
N2

N1
= geff

We see that the effective coupling among a subclass of gauge theory states

can be identified with the effective coupling between the winding NR closed

strings.

• By taking this coupling to be large, we go over to M-theory . The wound

NR string becomes a non-relativistic membrane wound over the x9, x10

directions.
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(iv) pp-wave mass parameter µ:

In the noncompact (usual) pp-wave background, the parameter µ can be

scaled to any value by rescaling

x+ → Λx+, x− → Λ−1x−

for some Λ.

It is also true that in a flat-space DLCQ background, the DLCQ radius can

be scaled to any value (by the same procedure).

But in the DLCQ pp-wave, things are different. We can simultaneously

change µ and the DLCQ radius R− by the above scaling, but not either one

separately. This is why there is one physically relevant parameter.
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(v) Deconstruction:

The same quiver gauge theory that we have been discussing was studied last

year in a different limit: N2 →∞, N1 fixed, and α′ → 0.

It was proposed that in this limit, taken along the Higgs branch, two

additional dimensions are dynamically deconstructed and one ends up with

the (2, 0) field theory. This arises as the decoupled theory on M5-branes.

We take N1, N2 →∞ together with the near-horizon limit of the D3-branes.

Also, we zoom in on a lightlike geodesic. This is similar to being in the Higgs

branch, because we miss the orbifold singularity.

Our final result is a DLCQ pp-wave of radius ∼
√
N1/N2, or a Galilean

string/membrane wrapped on a circle/torus of radius ∼
√
N2/N1.

It is not clear if conventional deconstruction can be obtained from this as

N2/N1 →∞.
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6. Conclusions

• Large quiver theories give a nontrivial generalization of the gauge/pp-wave
correspondence. They describe the Discrete Light Cone Quantization of
type IIB string theory on a pp-wave background.

• They also deconstruct the non-relativistic closed string/membrane. The
operator wrapping the moose once is a DLCQ string bit.

• It is clearly of interest to study string interactions in this model. For small
values of k, the formulae should be simpler and hopefully we can check
more.

• Another open problem is to directly study the non-relativistic string in a
potential and compare it with gauge theory.

• But there is a more important conceptual question: DLCQ is often
associated to a fundamental formulation of a theory (as with M(atrix)
Theory). Is there such a fundamental formulation – M(oose) Theory –
hidden here?



THE END


