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1. Introduction

• Type II string theory has various stable, BPS Dp-

branes:
IIA : p = 0, 2, 4, 6, 8

IIB : p = −1, 1, 3, 5, 7, 9

and unstable non-BPS Dp-branes:

IIA : p = −1, 1, 3, 5, 7, 9

IIB : p = 0, 2, 4, 6, 8

• The spectrum on the latter branes is the spectrum of a

single open string, but without GSO projection. Hence

there is a real tachyon.

• The BPS branes are of course stable, while the non-

BPS branes can decay, via tachyon condensation, into

the vacuum, or into lower (BPS or non-BPS) branes.

• A pair of a BPS brane and its antibrane is also unstable

and can decay similarly.
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• This is quite a general paradigm. In flat backgrounds,

type IIA branes are either BPS and stable, or non-BPS

and unstable.

• It is interesting to look for backgrounds which admit

non-BPS but stable branes. In this situation,

masses are not protected by BPS formulae. We can

hope to disentangle effects of duality from effects of

supersymmetry.

• If the backgrounds are themselves non-supersymmetric

then things rapidly become difficult. The most

accessible situations are those where the backgrounds

are supersymmetric, but the states that we study are

not.

• Some examples are: orbifolds, orientifolds, Calabi-

Yau compactifications. Another class of examples is

provided by suspended brane constructions. These all

have lower supersymmetry than flat space, which helps

to find stable non-BPS states.

• In the following I will make extensive use of the

conifold singularity and its brane-construction dual.

ALE spaces will also play an auxiliary role.
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2. Singularities, Brane Duals and Fractional

Branes

• Let us start with type IIB on a Z2 ALE singularity

along the (6789) directions.

• Via T-duality along x6, the ALE singularity turns

into a pair of NS5-branes in type IIA string theory,

extending along the (12345) directions and located at

different points along x6:

• The ALE singularity hides a 2-cycle Σ of zero size,

which can be resolved to get an Eguchi-Hanson space.

But at the orbifold point, the NS-NS B-field has a flux

of 1
2 through this 2-cycle. In the brane dual, the NS5-

branes are symmetrically located along the x6 circle.

• This duality extends beyond the orbifold point.

Varying the B-flux in the ALE corresponds to varying

the relative x6 separations of the NS5-branes.
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• If we bring a D3-brane into the plane of an ALE

singularity, it can split into a pair of fractional D3-

branes f3, f3′ of charge and tension α and 1−α where

α =
∫
ΣB is the B-flux.

• The fractional branes are interpreted as:

f3 : D5 wrapped on Σ

f3′ : D5 wrapped on Σ,
∫

Σ
F = 1

• In the dual brane construction, a D4-brane wrapped on

x6 can be brought in to touch the NS5-branes, where

it can break into two pieces:

• The gauge group U(1) × U(1) and the presence of

bi-fundamental matter is also evident from the brane

construction.
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• An analogous relation holds for the conifold singularity

along the (456789) directions. It is dual to a similar

brane construction but with rotated NS5-branes:

• This model too has bi-fundamental matter, but also a

quartic superpotential.
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3. Fractional Branes and a Stable Non-BPS

Configuration

• An interesting class of non-BPS brane configurations

is obtained from the system of an adjacent brane-

antibrane pair. In some cases, this can be analysed

using perturbative string theory, via duality to ALE

or conifold singularities.

• The configuration of interest contains a pair of parallel

NS5-branes oriented as was just discussed. In the two

intervals between the NS5-branes, we place a D4-brane

and a D4-brane:

• The NS5-brane configuration is T-dual to an

ALE singularity. The D4 and D4-brane in the

intervals T-dualise into a fractional brane and a

fractional antibrane. Let us try to understand this

correspondence in more detail.
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• A D3 − D3 pair at a Z2 ALE singularity splits into

4 distinct types of fractional branes, which we call

f3, f3′, f3, f3′.

• These are interpreted as follows:

f3 : D5 wrapped on Σ,
∫

Σ
F = 0

f3′ : D5 wrapped on Σ,
∫

Σ
F = 1

f3 : D5 wrapped on Σ,
∫

Σ
F = 0

f3′ : D5 wrapped on Σ,
∫

Σ
F = 1

• Introducing a D4−D4 pair in the brane construction,

we see that it too can break into four distinct pieces:

• This is the Coulomb branch, and we can identify the

four fractional branes as in the figure.
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• Since we are interested in studying an adjacent D4−D4

pair, we see that the dual fractional branes are f3 and

f3′.

• This system has a net D5-brane charge of +2, and a

net D3-brane charge of 2α− 1.

• The open strings connecting adjacent branes corre-

spond in the ALE dual to the following Chan-Paton

factors:

f3− f3′ :
1

2
(σ3 + iσ2)⊗ (σ1 + iσ2)

f3′ − f3 :
1

2
(σ3 − iσ2)⊗ (σ1 − iσ2)

f3′ − f3 :
1

2
(σ3 − iσ2)⊗ (σ1 + iσ2)

f3− f3′ :
1

2
(σ3 + iσ2)⊗ (σ1 − iσ2)

• These are all odd under the ALE projection. Therefore

the strings connecting f3 to f3′ have no tachyonic or

massless bosonic states. In fact, these strings only give

massless fermions.
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• Next we construct the boundary states corresponding

to the fractional D3-branes, and use them to compute

the force between the adjacent pair of interest.

• There are four independent consistent boundary states

for D3, D3, which can be identified with the four

fractional branes f3, f3′, f3′, f3.

|D3,+〉 = 1

2
(|U〉NSNS + |U〉RR + |T 〉NSNS + |T 〉RR)

|D3,−〉 = 1

2
(|U〉NSNS + |U〉RR − |T 〉NSNS − |T 〉RR)

|D3,+〉 = 1

2
(|U〉NSNS − |U〉RR − |T 〉NSNS + |T 〉RR)

|D3,−〉 = 1

2
(|U〉NSNS − |U〉RR + |T 〉NSNS − |T 〉RR)

• The amplitude of interest is:

∫ ∞
0

dl 〈D3,+|e−lHc|D3,+〉

=
∫ ∞
0

dt

2t
trNS−R



1− (−1)F

2

1− R

2
e−2tH0




=
v(4)

32(2π)4

∫ ∞
0

dt

t3

{f3(q̃)
8 + f4(q̃)

8 − f2(q̃)
8

f1(q̃)8

− 4
f4(q̃)

4f3(q̃)
4 + f4(q̃)

4f3(q̃)
4

f1(q̃)4f2(q̃)4

}
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• This simplifies to:

v(4)

16(2π)4

∫ ∞
0

dt

t3
f4(q̃)

8

f1(q̃)8


1− 4

f1(q̃)
4f3(q̃)

4

f2(q̃)4f4(q̃)4




The integrand is strictly negative, implying that the

force between the f3 and f3′ is repulsive.

• Thus we find that the force between an adjacent

suspended brane-antibrane pair is repulsive.

• Now consider a “twist” on the configuration of

adjacent brane-antibrane pairs that we discussed

earlier. We rotate one NS5-brane:

• Thus we now have an NS5 and an NS5’-brane, making

up the brane dual of the conifold. The adjacent brane-

antibrane pair is dual to fractional branes at a conifold.
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• Physically, we expect a repulsive force between the

adjacent brane and antibrane, as was shown earlier

in the unrotated model. But there is also a classical

attraction since the branes cannot separate without

being stretched.

• This leads to a possibility of stable equilibrium at finite

displacement.

• In fact we get a more complicated result exhibiting a

phase transition as a function of the radius.

• The tension of the stretched D4-brane is

V T4

√

L2 + 2r2

where V is an (infinite) volume factor, T4 is the tension

of a BPS D4-brane, and L is the separation between

the NS5 and NS5’-branes.

• We assume that the repulsion is as for the

ALE (unrotated) case, since it comes from strings

connecting the D4−D4 pair across each NS5-brane.
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• After a calculation, we find that the shape of the

potential depends on the separation parameter L.

• Hence the brane and antibrane are aligned for small L

but they separate to a finite distance for large L:

An estimate gives Lc ∼ 0.28 g−1
s .
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4. Branes at a Conifold and Non-BPS

States in AdS5

• If we bring N D3-branes to a conifold singularity

and take the large-N limit, we end up with a 1
4-

supersymmetric background of type IIB: AdS5 × T1,1
where T1,1 is a particular Einstein 5-manifold.

• If we T-dualise the conifold we get a model of rotated

NS5-branes. N D3-branes at the conifold become N

D4-branes wrapped round the x6 circle:

• The adjacent brane-antibrane model that we have

described does not have an AdS dual. If we add N D4-

branes then the D4 will annihilate against a fractional

D4-brane, leaving N − 1 whole D4-branes plus two

fractional D4-branes:
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• Let us now describe a stable non-BPS brane

construction that, instead, does have an AdS dual.

• Take N D4-branes as before and introduce a D2-brane

in the first interval:

• In the conifold geometry, this corresponds to the

introduction of a fractional D-string in the plane of

the singularity.

• This configuration is clearly non-supersymmetric. For

example, the strings joining a D2-brane and N D4-

branes in the interval will be tachyonic. The stable

result should be a bound state of the D4-branes

and the D2-brane. While this is BPS by itself, the

neighbouring interval still has only D4-branes:
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• The (2, 4) bound state and the D4-branes preserve

incompatible supersymmetries. Hence the whole

system is non-BPS, much as for an adjacent brane-

antibrane pair.

• In the conifold geometry, we have a fractional D-string

bound to N f3-branes and coincident with N f3′

branes.

• Now we can take the large N limit. What does this

state become?

• The conifold geometry is replaced by its 5-manifold

base, the Einstein space T1,1. Topologically,

T1,1 ∼ S2 × S3

• The S2 is the same 2-cycle that was of vanishing size

before taking the large-N limit. The fractional D-

string was actually a D3-brane wrapped on this S2.

• Hence, in the large N limit, the fractional D-string can

be identified with a “fat string” obtained by wrapping

a D3-brane on S2.
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• Before going further, let us list all the unwrapped and

wrapped branes of this model:

Dim. −− S2 S3 S2 × S3

−1 D(−1) D1 UD2 UD4

0 UD0 UD2 D3 D5

1 D1 D3 UD4 UD6

2 UD2 UD4 D5 D7

3 D3 D5 UD6 UD8

4 UD4 UD6 D7 D9

• The D5 wrapped on S2 is known to be a domain wall

that augments the gauge group:

SU(N)× SU(N) → SU(N + 1)× SU(N)

• The D3 wrapped on S2 is our fat string. We would

like to understand its holographic dual description.

• The Euclidean D-string wrapped on S2 gives rise to

a new instanton, while the (unstable) UD2 on S2

is a new unstable D0-brane. We will examine their

holographic duals too.



[18]

5. Some Properties of the Fat String

• The nature of the fat string depends on the B-flux

through S2. In general we have

∫

S2 BNS,NS = α,
∫

S2 BRR = β

• The SU(N) × SU(N) gauge theory on the 3-branes

has couplings and θ-angles given by

τ1 = β + ατs

τ2 = −β + (1− α)τs

where τs =
χRR
2π + i

gs
.

• The fat string carries D-string charge α and F-string

charge β, by virtue of the Chern-Simons coupling

∫
BNS,NS ∧BRR → α

∫
BRR + β

∫
BNS,NS

on a D3-brane.

• It is convenient to choose β = 0.
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• The tension of the fat string can be estimated from

integrating the DBI action of a D3-brane over S2:

Tfat ∼ T3
∫

S2

√
detg + (BNS,NS)

2

In the flat space limit, the S2 is of zero size and this

becomes

Tfat ∼ T3 α

which shows that it is BPS. On the other hand at large

N the dominant contribution comes from

Tfat ∼ T3
∫

S2
√
g ∼ N

(gsN)
1
2α′

• As with fractional branes, there are really two

complementary fat strings, the second one being an

anti D3-brane wrapped over S2 and having a magnetic

flux
∫
F = 1 over the cycle. We call this a fat′ string.

It has a D-string charge (1− α).

• The non-BPS nature of fat strings, and their charges,

imply the reaction

fat string + fat′ string → D-string

with loss of energy.
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• Recall how a D-string is understood in holography.

In AdS5 × S5, a D-string parallel to the boundary

corresponds to a magnetic flux tube. As the string

falls towards the horizon, the flux tube fattens and in

the limit becomes a constant flux:

• The same result holds for a D-string in AdS5 × T 1,1,

but the flux is in the diagonal of the SU(N)×SU(N)

gauge group.

• The fat string is similarly a flux tube in the boundary

theory, but this time the flux is only in one SU(N)

factor.

• This is consistent with its non-BPS nature. On a

3-brane we have nonlinearly realised supersymmetry

that acts on the gauginos as:

δ∗λ(1)α =
1

4πα′
η∗α, δ∗λ(2)α =

1

4πα′
η∗α

and linearly realised supersymmetry:

δλ(1)α = F
(1)
23 σ23βα ηβ, δλ(2)α = F

(2)
23 σ23βα ηβ
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We see that, if and only if the fluxes are diagonal:

F (1) = F (2) = F , there is a surviving set of linearly

realised supersymmetries, described by choosing

η∗α = −4πα′F23σ23βα ηβ

• With this non-BPS fat string, one can now study

Wilson/’t Hooft loops in the AdS context and compare

predictions at weak and strong ’t Hooft coupling (in

progress).

• A brief comment on some other wrapped branes:

D1 wrapped on S2 is a new “D-instanton”. It is

expected to be dual to a Yang-Mills instanton in the

first factor of SU(N)× SU(N).

It has its own associated sphaleron, the D2-brane of

type IIB wrapped on S2.

• The relation between the two is parallel to the

one between unwrapped D-instantons and D0-branes,

studied recently.
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6. Conclusions

• The stable brane-antibrane construction could decribe

an interesting non-SUSY model field theory. Micro-

scopically it has a pair of branes separated by a finite

calculable distance (brane-world model?).

• BPS brane constructions are most useful when we can

use S-duality or M-theory. What do we learn from

these about brane-antibrane constructions.

• Is there a physical reason why “fat” objects are

associated to one SU(N) factor while “thin” objects

are diagonal in SU(N)× SU(N)?

• A lot of interesting physical results should emerge from

a closer inspection of the AdS/CFT correspondence

for non-BPS states.


