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1 Scalar fields

1.1 Preliminaries: why QFT?

We know that quantum mechanics and the special theory of relativity are both properties

of nature. The validity of quantum mechanics is experimentally demonstrated by the pho-

toelectric effect, atomic spectra etc. Similarly that of special relativity is demonstrated by

experiments showing constancy of speed of light, time dilation etc.

The question then is: how do we extend quantum mechanics to incorporate relativity? Or

putting it the other way, how do we extend relativity to incorporate quantum mechanics?

The basic equation of quantum mechanics is the Schrodinger equation:

i~
∂

∂t
ψ(x, t) = − ~

2

2m
~∇2ψ(x, t) + V (~x)ψ(x, t)

Clearly this is not relativistic, since it treats space and time differently.

Now, a basic equation of relativity is:

E2 = ~p 2c2 +m2c4

which in units where c = 1 (which we use henceforth) becomes:

E2 = ~p 2 +m2

Of course this equation is classical rather than quantum.

In quantum mechanics, |ψ(x, t)|2 is the probability of finding a particle at some point in

space and time. As we will see, extending the Schrödinger equation to a relativistic wave

equation is not merely a technicality but forces us to change interpretation.

Where does the Schrödinger equation come from? We start with the non-relativistic classical

relation:

E =
~p 2

2m
+ V (~x)

and then make the replacements, motivated by wave mechanics:

E → i~
∂

∂t
, ~p→ −i~~∇

For a free particle (V (~x) = 0) it is easy to guess a relativistic equation. For a relativistic

particle we have:

E =
√

~p 2 +m2 ∼ m+
~p 2

2m
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where the RHS holds (after dropping the constant m from the definition of energy) in the

non-relativistic limit.

So we may just replace E =
~p 2

2m
by E2 = ~p 2+m2 and then try to convert it to a Schrödinger-

like equation for a wave function ψ(xµ) where xµ = (t, ~x). In what follows we will write ψ(xµ)

as ψ(x) for simplicity. The result is:

−~
2 ∂

2

∂t2
ψ = −~

2~∇2ψ +m2ψ

Introducing:

∂µ =

(

∂

∂t
, ~∇
)

and ∂µ = ηµν∂ν , we have:

(E, ~p)→ i~∂µ

Then the above equation can be written:

~
2∂µ∂

µψ(x) +m2ψ(x) = 0

which is the free Klein-Gordon equation. To check that the dimensions are correct, note that

in units where c = 1 we have:

[~] = ML, [∂µ] = L−1, [m] = M

The general solution to this equation is:

ψ(t, ~x) = e−ikµxµ

under the condition that:

−~
2kµk

µ +m2 = 0

This can be solved for k0:

k0 = ±1

~

√

~2~k2 +m2

Since energy is represented by i∂/∂t, the energy eigenvalue follows from:

i
∂

∂t
e−ikµxµ

= k0 e
−ikµxµ

= ±1

~

√

~2~k2 +m2 e−ikµxµ

Therefore negative energy solutions are allowed.

Classically we could restrict to positive energy solutions. Even in relativistic quantum me-

chanics, we could try to do the same as long as we have a free wave equation. But the laws

of quantum mechanics make it clear that once interactions are included, there will be tran-

sitions between positive and negative energy states (the energy difference between a positive

and negative energy state is finite). Thus the physics of the Klein-Gordon equation, treated

as a wave equation, is inconsistent.
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1.2 Classical fields

We conclude that a relativistic wave equation as an analogue to the Schrödinger equation is

not physically meaningful. An alternative approach is to consider fields. Let us consider the

electromagnetic field. Non-relativistically it is defined via φ(t, ~x) (the scalar potential) and
~A(t, ~x) (the vector potential). In special relativity these two fields combine into a 4-vector

potential:

Aµ(x) =
(

φ(t, ~x), ~A(t, ~x)
)

We can write Maxwell’s equations in free space (no charges or currents) as:

~∇ · ~B = 0, ~∇× ~B =
∂ ~E

∂t
,

~∇ · ~E = 0, ~∇× ~E = −∂
~B

∂t

where:

~E = −∂
~A

∂t
− ~∇φ, ~B = ~∇× ~A

These can be written in relativistic form as follows. Define

Fµν = ∂µAν − ∂νAµ

The electric and magnetic fields Ei, Bi are defined in terms of components of Fµν by:

F0i = Ei, Fij =
1

2
ǫijkBk

and the Maxwell equations become:

∂µFµν = 0, ǫµνλρ∂νFλρ = 0

The electromagnetic field Aµ(x) is a 4-vector at each point of space and time. It can be

thought of as classical for many purposes (hence the subject “classical electrodynamics”).

However, as Planck taught us, one can go wrong by considering it to be classical in certain

situations where the correct answer is only obtained by quantising the field.

A priori, quantising a field has little to do with particles or wave equations. Just think of the

field as a dynamical variable, consider its equations of motion and convert them to equations

for operators in a Hilbert space. This can be done for the electromagnetic field, but it is not

the simplest case to consider. Instead of a 4-vector field Aµ, let us consider a simpler field
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that has just one component: a scalar field φ(x). The obvious relativistic field equation one

can write down for this, analogous to the Maxwell equation for Aµ, is:

∂µ∂
µφ(x) = 0

This is the massless free Klein-Gordon equation. But now it is not a wave equation! φ(x) is

not the wave function of a particle with |φ|2 being the probability density. That would lead

us back to the problem of negative energy states. Instead, we consider φ(x) to be a field and

quantise the field.

To be a little more general, we extend the field equation by putting back the mass term. It

remains to be seen what is the physical interpretation of the field, as well as the mass term.

We return to that later on. Thus we want to quantise φ(x) satisfying:

~
2∂µ∂

µφ(x) +m2φ(x) = 0

Let’s assume we have never quantised a field before, but we know how to quantise coordinates

q(t) appearing in a harmonic-oscillator Lagrangian like:

L =
1

2
mq̇2 − 1

2
mω2q2

This is quantised by promoting q(t) to an operator and imposing the canonical commutation

relation:

[q, p] = i~

As we now show, we can reduce φ(x) to a set of harmonic-oscillator coordinates labelled

q~k(t), by a simple device. Each q~k(t) will describe a separate harmonic oscillator and can be

quantised independently as above.

For this, place the system in a cubical box of side L. Thus,

0 ≤ x, y, z ≤ L

Now impose periodic boundary conditions across the box:

φ(t, x, y, z) = φ(t, x+ L, y, z) = φ(t, x, y + L, z) = φ(t, x, y, z + L)

The functions of ~x that satisfy the box boundary conditions are:

ei~k·~x

where ~k = 2π
L

(m1, m2, m3) for any three integers m1, m2, m3.
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Therefore an arbitrary field configuration φ(x) can be expanded as:

φ(t, ~x) = N
∑

~k

q~k(t)e
i~k·~x

where N is a normalisation factor. The q~k(t) are fluctuation modes of the field φ(x).

Inserting this into the Klein-Gordon field equation above, we find:

q̈~k(t) +

(

~k2 +
m2

~2

)

q~k(t) = 0

where ~k2 =
4π2

L2
(m2

1+m
2
2+m

3
3). Thus for every ~k we have an independent harmonic oscillator

with frequency

ω~k =

√

~k 2 +
m2

~2

Note that the q~k(t) are not physical coordinates of space, but because they obey the harmonic-

oscillator equations of motion they can be thought of as some type of “generalised coordi-

nates”.

Since we chose φ(x) to be real, we have

q⋆
~k
(t) = q−~k(t)

Thus the quantum Klein-Gordon field has reduced to a collection of infinitely many harmonic

oscillators, each decoupled from the other. This is a system we know how to quantise.

1.3 Quantising free scalar fields

We can write down a Lagrangian whose equations of motion give the equations of motion

for q~k(t) written down in the previous section:

L(q, q̇) =
1

2
q̇2
0 −

1

2
ω2

0 q
2
0 +

∑

~k>0

(

q̇−~k q̇~k − ω2
~k
q−~k q~k

)

where we conventionally take the vector ~k = 2π
L

(m1, m2, m3) to be > 0 if its first non-

vanishing component is > 0. In deriving the above Lagrangian, the normalisation of the

expansion of φ(x) in terms of the q~k was used.
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The canonical momenta for this Lagrangian are:

~p0 ≡
∂L

∂q̇0
= q̇0

~p~k ≡
∂L

∂q̇−~k

= q̇~k

~p−~k ≡
∂L

∂q̇~k
= q̇−~k

where ~k > 0. The Hamiltonian is then:

H = p0 q̇0 + p−~k q̇~k + p~k q̇−~k − L

=
1

2
p2

0 +
1

2
ω2

0 q
2
0 +

∑

~k>0

(

p−~k p~k + ω2
~k
q−~k q~k

)

= H0 +
∑

~k>0

H~k

Now impose canonical commutation relations:

[q~k, p−~k′] = i~ δ~k,~k′, [p~k, p~k′] = [q~k, q~k′] = 0

The above equations hold for all positive and negative ~k as well as ~k = 0.

This converts q~k(t) into quantum operators, and thereby

φ(~x, t) = N
∑

~k

q~k(t)e
i~k·~x

also becomes a quantum operator. Note that the operators obey:

p†~k = p−~k, q†~k = q−~k

The Hamiltonian is solved by factorising each harmonic oscillator using the creation/annihilation

operator method. We start by defining:

a~k =
1

√

2~ω~k

(

ip~k + ω~k q~k
)

where ~k,~k′ can be positive, negative or zero. It follows that:

a†~k =
1

√

2~ω~k

(

−ip−~k + ω~k q−~k

)
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It is easy to check that:

[a~k, a
†
~k′

] = δ~k,~k′

Now we have:

H =
∑

~k

~ω~k

(

a†~k a~k +
1

2

)

where the sum is over all k.

For each harmonic oscillator, the state of lowest energy is the “Fock vacuum” defined by:

a~k |0〉 = 0, all ~k

This is interpreted as the quantum state of the field theory which is empty of excitations.

Other states will be interpreted as containing “field quanta”, otherwise known as “elementary

particles”.

The ground state energy of the entire system is the constant (operator-independent) term

in the Hamiltonian, namely:

E0 =
1

2
~ω0 + ~

∑

~k>0

ω~k

Unfortunately the sum is infinite! This is the first of many potential difficulties in quantum

field theory.

On the other hand, all excited states have strictly positive energy compared to the ground

state. Negative energy states simply do not exist when we quantise a field!

To see this more explicitly, we first re-define the Hamiltonian by subtracting off the infinite

constant. This simply means we measure all energies relative to the vacuum state, which

seems quite reasonable physically. In a true harmonic oscillator we measure the ground state

energy by comparing it with the energy when the oscillator is absent. For a field, we cannot

do this – the field is always present, whether or not it is excited. In the absence of gravitation

(which couples to all energy including vacuum energy) we can therefore just set the vacuum

energy of a field to zero1.

Hence the quantum Hamiltonian of the free real Klein-Gordon field is simply:

H =
∑

~k

~ω~k a
†
~k
a~k

1When gravity is present we would instead set the vacuum energy equal to the value measured experi-
mentally. However a fundamental theory of quantum gravity could possibly allow us to calculate the vacuum
energy.
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The finite size is only a convenience. If we take the limit L→∞, we get continuous allowed

values of ~k and:

H =

∫

d3k

(2π)3
~ω~k a

†
~k
a~k

where

[a~k, a
†
~k′

] = (2π)3 δ3(~k − ~k′)

Now that we have quantised the free Klein-Gordon field, we need to interpret the result.

The energy eigenstates are

a†~k1

a†~k2

· · ·a†~kn
|0〉

As we saw, the state |0〉 is chosen to have zero energy (this amounts to a choice of the origin

of energy). Now consider the state a+
~k
|0〉. This state satisfies:

H(a†~k|0〉) = ~ω~k(a
†
~k
|0〉)

and therefore its energy is:

E~k = ~ω~k =

√

~2~k2 +m2

This state fits perfectly with our expectations of a state containing a single particle of

momentum ~p = ~~k. We therefore interpret it as a one-particle state.

When we study conserved currents, we will show that the operator:

~P =
∑

~k

~~k a†~k a~k

measures the 3-momentum of the state. We have

~P |0〉 = 0, ~P ( a†~k|0〉 ) = ~~k ( a†~k|0〉 )

which is exactly what we expect with our interpretation.

If we consider the most general state:

a†~k1

· · ·a†~kn
|0〉

we have

H
(

a†~k1

· · ·a†~kn
|0〉
)

=

(

~

n
∑

i=1

ω~ki

)

(

a†~k1

· · ·a†~kn
|0〉
)

as well as:

~P
(

a†~k1

· · ·a†~kn
|0〉
)

=

(

n
∑

i=1

~ki

)

(

a†~k1

· · ·a†~kn
|0〉
)
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as expected for a multiparticle state with n non-interacting particles.

Also, because the a† all commute among themselves, the state a†~k1

a†~k2

|0〉 is the same as the

state a†~k2

a†~k1

|0〉. This means the particles corresponding to this field satisfy Bose statistics!

We also see that there is a single state for fixed particle number and momenta. The absence

of another label giving a degeneracy indicates there is no spin in this case.

Thus we see that quantising the free real Klein-Gordon field gives us states containing arbi-

trary numbers of free spinless particles, all of a common mass m and obeying Bose statistics.

Let us now see what quantisation of the a~k, a
†
~k

tells us about the original field φ. We have:

φ(~x) =

∫

d3k

(2π)3
q~k(t) e

i~k·~x

where again we are using language appropriate for infinite space rather than a box. Since:

q~k =
1

√

2~ω~k

(

a~k + a†
−~k

)

we have

φ(~x) =

∫

d3k

(2π)3

1
√

2~ω~k

(

a~k e
i~k·~x + a†~k e

−i~k·~x
)

Since we also have

p~k = −i
√

ω~k

2~
(a~k − a

†

−~k
)

we can construct:

π(~x) = −i~2

∫

d3k
√

(2π)3

√

ω~k

2~

(

a~k e
i~k·~x − a†~k e

−i~k·~x
)

This operator π(~x) is called the canonical momentum conjugate to φ(~x). Later we will see

that it has a natural definition even without going to Fourier modes.

Now it is straightforward, using

[a~k, a
†
~k′

] = (2π)3 δ3(~k − ~k′)

to show that

[φ(t, ~x), π(t, ~x′)] = i~ δ3(~x− ~x′)
[φ(t, ~x), φ(t, ~x′)] = [π(~x), π(~x′)] = 0

This could be an alternate starting point for the quantisation procedure. Notice that the

field commutators are taken at equal times.

Henceforth in these lectures we work in units in which ~ = 1.
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1.4 Comment on normalisation

How to normalise the state:

|~k〉 ∼ a†~k |0〉

If we try 〈~k|~ℓ〉 = (2π)3δ3(~k − ~ℓ), this is not Lorentz invariant.

Consider a boost along x1 described by:

k′0 = coshα k0 + sinhα k1

k′1 = sinhα k0 + coshα k1

Then the delta-function becomes:

δ3(~k′ − ~ℓ′) = δ(k′1 − ℓ′1)δ(k′2 − ℓ′2)δ(k′3 − ℓ′3)

which is equal to:

δ
(

sinhα(k0 − ℓ0) + coshα(k1 − ℓ1)
)

δ(k2 − ℓ2)δ(k3 − ℓ3)

Since k0 = ω~k =
√

~k2 +m2, we have:

k0 − ℓ0 = ω~k − ω~ℓ =

√

~k2 +m2 −
√

~ℓ2 +m2

Using the behaviour of the delta-function under a change of variables, one can now show

that:

δ
(

sinhα(k0 − ℓ0) + coshα(k1 − ℓ1)
)

=
ω~k

ω~k′

δ(k1 − ℓ1)

It follows that ω~k δ
3(~k − ~ℓ) is Lorentz invariant.

Therefore we choose the normalisation such that:

〈~k|~ℓ〉 = (2π)3 2ω~k δ
3(~k − ~ℓ)

which means the normalised state of momentum k should be defined as:

|~k〉 =
√

2ω~k a
†
~k
|0〉

We will see that in this way, the Hamiltonian formalism recovers Lorentz invariance for

physical quantities, despite non-covariant choices along the way.
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1.5 Time evolution of the field

With all this, we can now go to the Heisenberg picture and explicitly determine the time

evolution of φ(t, x). We have

φ(t, ~x) = eiHt φ(0, ~x) e−iHt

This can be easily computed starting from the analogous statement for the creation and

annihilation operators:

a~k(t) = eiHta~k e
−iHt, a†~k(t) = eiHta†~k e

−iHt

where in this equation and everything that follows, a~k, a
†
~k

stand for a~k(t = 0), a†~k(t = 0).

There is a simple trick to evaluate the above expressions. From the Hamiltonian:

H =

∫

d3k

(2π)3
ω~k a

†
~k
a~k

we find:

[H, a~k] = −ω~k a~k

[H, a†~k] = ω~k a
†
~k

It follows that

eiHta~k e
−iHt = e−iω~k

ta~k

eiHta†~k e
−iHt = eiω~k

ta†~k

Then from

φ(0, ~x) =

∫

d3k

(2π)3

1
√

2ω~k

(

a~k e
i~k·~x + a†~k e

−i~k·~x
)

we get

φ(~x, t) =

∫

d3k

(2π)3

1
√

2ω~k

(

a~k e
−ik·x + a†~k e

ik·x
)

where k · x = kµx
µ, with kµ = (ω~k,

~k) and xµ = (t, ~x).

Notice that a~k multiplies e−iω~k
t while a†~k multiplies eiω~k

t (by definition, ω~k > 0 always). We

call e−iω~k
t a positive frequency mode (because acting on it with i~∂/∂t would give a positive

energy eigenvalue) and eiω~k
t a negative frequency mode.

We see that the positive frequency mode is multiplied by an operator which destroys a

particle of energy ω~k while a negative frequency mode occurs with an operator that creates

a particle of energy ω~k. The energy is always positive.
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For complex φ, things are different. We then have two fields φ(x), φ†(x). In what follows we

will show that to a complex field φ one can associate a charge such that φ has charge +1 in

some units while φ† has charge -1.

In terms of the mode expansion, we find that there are twice as many oscillator modes, and

the mode expansion is:

φ(~x, t) =

∫

d3k

(2π)3

1
√

2ω~k

(

b~k e
−ik·x + a†~k e

ik·x
)

φ†(~x, t) =

∫

d3k

(2π)3

1
√

2ω~k

(

a~k e
−ik·x + b†~k e

ik·x
)

We a†~k as the operator that creates a particle of momentum ~k, as before, while b†~k creates a

particle of the same momentum but opposite charge. We call the latter an antiparticle.

From the mode expansion we see that φ contains the modes a† that create particles as well

as the modes b that destroy antiparticles. This makes sense because in both cases the charge

of the state increases by 1 unit. Similarly φ† contains modes b† that create antiparticles and

modes a that destroy particles. In both cases the charge of the state decreases by 1 unit.

1.6 Causality

In this section we examine whether, in quantum field theory, physical signals can propagate

over space-like intervals. For this we should compute the vacuum expectation value of the

commutator [φ(x), φ(y)]. We will see that this is zero over space-like intervals, which by

the laws of quantum mechanics guarantees that measurement of one field cannot affect

measurement of the other. Therefore signals cannot propagate over such intervals, exactly

as expected based on the structure of classical special relativity. On the other hand, the

above expectation value will turn out to be nonzero over time-like intervals indicating that

signals can propagate over such intervals.

Let us work with real scalar fields φ(x). Consider the state:

φ(x)|0〉

Given that

φ(x) =

∫

d3k

(2π)3

1
√

2ω~k

(

a~k e
−ik·x + a†~k e

ik·x
)

we have:

φ(x)|0〉 =

∫

d3k

(2π)3

1
√

2ω~k

eik·xa†~k|0〉
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since the first term a~k|0〉 vanishes. This can be interpreted as the state corresponding to one

particle localised at position ~x, and evolving in time t. The corresponding adjoint state is:

〈0|φ(x) =

∫

d3k

(2π)3

1
√

2ω~k

e−ik·x〈0|a~k

Now we already know that

[φ(t, ~x), φ(t, ~x′)] = 0

as long as ~x 6= ~x′. If we consider the apparently more general commutator [φ(x), φ(y)], we

realise right away that this is also zero for (x − y)2 < 0, i.e. for space-like intervals. The

reason is that in this case, as we will show below, by a Lorentz transformation we can bring

the two space-time points into the form (t, ~x) and (t, ~x′).

The answer is hard to compute explicitly but simplifies in the limit of large (space-like or

time-like) separation. Let us define:

D(x, y) = 〈0|φ(x)φ(y)|0〉

Note that by translation invariance, D(x, y) depends only on the separation between the two

space-time points. Henceforth we denote it D(x− y).

Inserting the mode expansion for φ, we have:

〈0|φ(x)φ(y)|0〉 =
∫

d3k

(2π)3

d3k′

(2π)3

1
√

2ω~k

1
√

2ω~k′

e−ik′·xe+ik·y〈0|a~k′a
†
~k
|0〉

The expectation value is evaluated as follows:

〈0|a~k′, a
†
~k
|0〉 = 〈0|

[

a~k′, a
†
~k

]

|0〉 = (2π)3δ3(~k − ~k′)

where we have used that a~k|0〉 = 〈0|a†~k = 0.

The result is that:

D(x− y) =

∫

d3k

(2π)3

1

2ω~k

e−ik·(x−y)

This will be computed for large separations in an Appendix to this section.

In terms of this quantity we have:

〈0|[φ(x), φ(y)]|0〉 = D(x− y)−D(y − x)

As we show in the Appendix, in the space-like case

D(x− y) ∼ e−m|r|
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for large r. Therefore at least in this limit, D(x, y)−D(y, x) = 0. In the time-like case, we

have instead:

D(x− y) ∼ e−imt

for large t. Therefore D(x, y) − D(y, x) ∼ sinmt 6= 0. Therefore signals can, and do,

propagate only over time-like intervals.

We have:

D(x− y)−D(y − x) = 〈0|[φ(x), φ(y)]|0〉 =
∫

d3k

(2π)3

1

2ω~k

(

e−ik·(x−y) − eik·(x−y)
)

For x0 > y0 this is equal to:

∫

d3k

(2π)3

∫

dk0

2πi

−1

k2 −m2
e−ik·(x−y)

where the contour passes above the poles k0 = ±ω~k. To show the above, note that:

1

k2 −m2
=

1

2ω~k

[

1

k0 − ω~k

− 1

k0 + ω~k

]

Now since x0 > y0, the contour can be closed in the lower half-plane and we get:

∫

dk0

2πi

−i
k2 −m2

e−ik·(x−y) =
1

2ω~k

(

eik·(x−y)
∣

∣

k0=ω~k

− e−ik·(x−y)
∣

∣

k0=ω~k

)

Inserting this in the above expression we recover

D(x− y)−D(y − x) =

∫

d3~k

(2π)3

1

2ω~k

(

e−ik·(x−y) − e+ik·(x−y)
) ∣

∣

k0=ω~k

as desired.

If instead x0 − y0 < 0 then with the same pole prescription we can close the contour in the

upper half-plane and we get 0. Therefore we have shown that:

∫

d4k

(2π)4

i

k2 −m2
e−ik·(x−y) = 〈0|[φ(x), φ(y)]|0〉, x0 − y0 > 0

= 0 otherwise

This motivates us to define a propagator called the retarded propagator by:

DR(x− y) = θ(x0 − y0)〈0|[φ(x), φ(y)]|0〉 =
∫

CR

d4k

(2π)4

i

k2 −m2
e−ik·(x−y)
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where the contour CR passes above the poles. Here θ(x0 − y0) is the step function which is

+1 for positive arguments and 0 for negative arguments.

Correspondingly the advanced propagator is:

DA(x− y) = θ(y0 − x0)〈0|[φ(x), φ(y)]|0〉 =
∫

CA

d4k

(2π)4

i

k2 −m2
e−ik·(x−y)

where the contour passes below the poles.

Exercise: show that

(∂2 +m2)DR,A(x− y) = −iδ4(x− y)
showing that the retarded and advanced propagators are Green’s functions for the Klein-

Gordon equation.

Appendix to Section 1.6

We wish to compute the dependence of

D(x, y) ≡ 〈0|φ(x)φ(y)|0〉

on x− y. As we have seen,

D(x, y) =

∫

d3k

(2π)3

1

2ω~k

e−ik·(x−y)

This is divergent for xµ = yµ!

Now we consider two special cases:

(i) x0 − y0 = t, ~x− ~y = 0

(ii) x0 − y0 = 0, ~x− ~y = (r, 0, 0)

The first case corresponds to time-like separation while the second corresponds to space-like

separation.

All time-like separations can be brought to the first form, and all space-like separations to

the second form, by a Lorentz transformation.

(A quick sketch of the proof is as follows. By a spatial rotation, any vector aµ can be brought

to the form (a0, a1, 0, 0). Now consider

a± = a0 ± a1
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and notice that a · a ≡ aµa
µ = a+a−. A Lorentz transformation acts as:

a+ → eβa+, a− → e−βa−

for some parameter β.

Now if a · a > 0 (time-like separation) then a+ and a− have the same sign and by a Lorentz

transformation we can make a+ = a−, i.e. aµ is of the form (a0, 0, 0, 0). If instead a · a < 0

(space-like separation) then a+ and a− have opposite signs and by a Lorentz transformation

we can make a+ = −a−, i.e. aµ is of the form (0, a1, 0, 0).)

Let us now evaluate D(x, y) in the two special cases. In the first one,

D(x, y) =

∫

d3k

(2π)3

1

2
√

~k2 +m2
e−i
√

~k2+m2 t

Since the integrand depends only on the magnitude of ~k we use d3k = 4π~k2d|~k| and get:

D(x, y) =
4π

2(2π)3

∫ ∞

0

d|~k|
~k2

√

~k2 +m2
e−i
√

~k2+m2 t =
1

8π2

∫ ∞

m

dE
√
E2 −m2 e−iEt

where in the last step we have made the substitution E =
√

~k2 +m2.

One can easily check by saddle-point methods that for large t, E ∼ m and so the integral in

the time-like case goes like:

∼ e−imt, t→∞

Next consider the spacelike case:

D(x− y) =

∫

d3k

(2π)3

1

2
√

~k2 +m2
ei~k·(~x−~y)

This time the integrand depends on the angle made by ~k with the x-axis, so we use d3k =

2π sin θ dθ~k2d|~k|. Then:

D(x, y) =

∫

2π sin θ dθ~k2 d|~k|
(2π)3

1
√

~k2 +m2
ei|k||r| cos θ

=
1

(2π)2

∫ ∞

0

d|~k|
~k2

2
√

~k2 +m2

ei|~k||r| − e−i|~k||r|

i|~k||r|

=
1

(2π)2
· −i
2|r|

∫ +∞

−∞

dp
p eip|r|

√

p2 +m2

This has square-root branch cuts at p = ±im. So we set p = iρ and find:

D(x, y) =
2

8π2|r|

∫ ∞

m

dρ
ρ e−ρ|r|

√

ρ2 −m2
∼ e−m|r|
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1.7 The Feynman propagator

There is another propagator, also a Green’s functions of the Klein-Gordon equation, that

corresponds to an important physical quantity. Define:

DF (x− y) =

∫

CF

d4k

(2π)4

i

k2 −m2
e−ik·(x−y)

where the contour CF is taken to pass below the first pole (at k0 = −ω~k) and above the second

pole (at k0 = ω~k). Now if x0 > y0 then we can close the contour below, capturing only the

pole at k0 = ω~k. In the reverse case y0 > x0 we close the contour above and capture the pole

at k0 = −ω~k.

In the first case, we find:

DF (x− y) =

∫

d3k

(2π)3

1

2ω~k

e−ik·(x−y)|k0=ω~k

which is the same as D(x − y) = 〈0|φ(x)φ(y)|0〉. In the second case we get D(y − x).

Therefore we have:

DF (x, y) = D(x− y), x0 > y0,

= D(y − x), y0 > x0

or more concisely,

DF (x, y) = θ(x0 − y0)D(x− y) + θ(y0 − x0)D(y − x)

Physically this is a propagator that takes a particle from earlier times to later times. It is

called the Feynman propagator and can be expressed as:

DF (x− y) = 〈0|T (φ(x)φ(y))|0〉

where T is the time-ordering symbol, defined by:

T (φ(x)φ(y)) = θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x)

The field at the later time is put to the left of the one at the earlier time.

We now derive an expression for the Feynman propagator that will be useful later on. Let

us decompose φ into its creation and annihilation pieces:

φ+(t, ~x) =

∫

d3k

(2π)3

1
√

2ω~k

a~k e
−ik·x

φ−(t, ~x) =

∫

d3k

(2π)3

1
√

2ω~k

a†~k e
ik·x
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Because φ+ always annihilates on the right, and φ− always annihilates on the left, we have:

DF (x− y) = θ(x0 − y0)〈0|φ+(x)φ−(y)|0〉+ θ(y0 − x0)〈0|φ+(y)φ−(x)|0〉

But for the same reason, we are allowed to replace each bilinear with a commutator, getting:

DF (x− y) = θ(x0 − y0)〈0| [φ+(x), φ−(y)] |0〉+ θ(y0 − x0)〈0| [φ+(y), φ−(x)] |0〉

Now the objects inside the vacuum expectation value are c-numbers, so we can drop the

expectation value altogether, getting:

DF (x− y) = θ(x0 − y0) [φ+(x), φ−(y)] + θ(y0 − x0) [φ+(y), φ−(x)]

As we will see, the Feynman propagator and the concept of time-ordering are fundamental

in Quantum Field Theory.

1.8 Actions and field equations

Let us now study some basic properties of the Klein-Gordon equation and the Lagrangian

from which it is obtained. Our considerations will be classical for a while. The Klein-Gordon

equation is:

(∂µ∂
µ +m2)φ = 0

This can be thought of as a variational equation obtained from the action:

S =

∫

d4x

(

1

2
∂µφ∂

µφ− 1

2
m2φ2

)

To show this, we must calculate
δS

δφ(y)
which is a functional derivative. For this, the basic

relation is:
δφ(x)

δφ(y)
= δ4(x− y)

which can be understood as an extension to the continuous case of the differentiation rule

for variables depending on a discrete index, namely:

δxi

δxj
= δij

where the RHS is the Kronecker delta.
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Applying the functional derivative rule we find:

δS

δφ(y)
=

∫

d4x
[

∂µφ(x)∂µδ4(x− y)−m2φ(x)δ4(x− y)
]

=

∫

d4x
[

−∂µ∂
µφ(x)−m2φ(x)

]

δ4(x− y)

= −
(

∂µ∂
µφ(y) +m2φ(y)

)

Thus the equation of motion is:

δS

δφ(y)
= 0 ⇒ (∂µ∂

µ +m2)φ(y) = 0

which is the free Klein-Gordon equation as desired.

We will later encounter more general actions, which will always be integrals over space-time

of a local Lagrangian density depending on φ and (usually) first derivatives of φ:

S =

∫

d4xL(φ, ∂µφ)

It is a straightforward exercise to show that in terms of the Lagrangian density, the variational

equation δS/δφ(x) = 0 is equivalent to:

∂µ
δL

δ(∂µφ(x))
− δL
δφ(x)

= 0

To generalise the Klein-Gordon Lagrangian to a complex field φ, we simply write:

S(φ, φ⋆) =

∫

d4x
(

∂µφ
⋆∂µφ−m2φ⋆φ

)

whose equations of motion are:

(∂µ∂
µ +m2)φ = (∂µ∂

µ +m2)φ⋆ = 0.

as desired. Note that when a field is complex, we vary φ and φ∗ independently.

Given a Lagrangian density L, the Hamiltonian density is defined by first defining the canon-

ical momentum conjugate to the field variable φ:

π(x) =
δL
δφ̇(x)

and then writing

H = π(x)φ̇(x)−L
and finally eliminating φ̇ in favour of π.

For the Klein-Gordon case we easily find that π = φ̇ and

H =
1

2
π2 +

1

2
(~∇φ)2 +

1

2
m2φ2
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1.9 Interactions

To introduce interactions, we must add terms to the Lagrangian of Klein-Gordon theory

which are of higher than quadratic power in the field φ. The resulting field equations will

then be nonlinear.

Thus, consider:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − V (φ)

where V (φ) is some function (with powers higher than quadratic) of φ, called the “potential”.

Note that it is a potential in field space, not a potential V (x) in ordinary space.

With this, the Hamiltonian density is

H =
1

2
π2 +

1

2
(~∇φ)2 +

1

2
m2φ2 + V (φ)

What is a reasonable choice for V (φ)? Let us take a fourth order polynomial:

V (φ) = a + bφ+ cφ2 + dφ3 + eφ4

We will see later that scalar field theories with higher than four powers of φ are “non-

renormalisable” and therefore inconsistent.

In this potential the constant term is irrelevant for physics so we drop it. The linear term

can removed by shifting φ. The quadratic term just modifies the value of m2 so we can

ignore it. That leaves the cubic and quartic term. It is common to take just the quartic

term, i.e. set a = b = c = d = 0. Conventionally the potential is then written as:

V (φ) =
λ

4!
φ4

The corresponding equation of motion is:

(∂µ∂
µ +m2)φ+

λ

3!
φ3 = 0

To study the resulting quantum theory, we are going to assume that the effect of interactions

is small and answers can be expressed as a power series in λ, with λ = 0 giving the usual

“free” answers that we have already obtained.

The Hamiltonian of the interacting theory can be written:

H =

∫

d3x

(

1

2
π2 +

1

2
(~∇φ)2 +

1

2
m2φ2 +

λ

4!
φ4

)

= H0 +Hint
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where Hint =
λ

4!

∫

d3xφ(x)4.

We already know how to treat H0. We showed that H0 could be converted into:

H0 =

∫

d3k

(2π)3
ω~k a

†
~k
a~k, [a~k, a

†
~k′

] = (2π)3δ3(~k − ~k′)

with |0〉 defined by a~k|0〉 = 0 for all ~k.

Now we can write
∫

d3xφ(x)4 in terms of a~k, a
†
~k

and therefore

H =

∫

d3k

(2π)3
ω~k a

†
~k
a~k +Hint

where Hint is a function of a4, a†a3, a†2a2, a†3a, a†4. It is clear that generically, Hint|0〉 6= 0.

The state Ω of minimum energy, or the “true vacuum”

(H0 +Hint)|Ω〉 = minimum

is therefore very complicated and cannot be calculated exactly. However, in terms of this

state we know what we would like to compute: the probability for a particle to propagate

from one point to another at a later time in the true vacuum of the interacting theory:

〈Ω|T (φ(x)φ(y))|Ω〉

We will now see how to “expand” |Ω〉 and φ(x) in terms of their free versions |0〉, φ0(x). We

have already encountered the definitions:

|0〉 : H0|0〉 = 0

|Ω〉 : (H0 +Hint)|Ω〉 = E0|Ω〉
where E0 is the lowest energy eigenvalue of H0 +Hint.

Similarly, given a field configuration φ(0, ~x) at time 0, the free field φ0(t, ~x) is the one that

evolves via H0, while the full φ(t, ~x) evolves via H :

φ0(t, ~x) = eiH0t φ(0, ~x) e−iH0t

φ(t, ~x) = eiHt φ(0, ~x) e−iHt

We worked out the time dependence of φ0(t, ~x) when we studied free fields. What we now

need is the time evolution of the full φ(t, ~x), which is not simple due to the interactions. We

have:

φ(t, ~x) = eiHt φ(0, ~x) e−iHt

= eiHt e−iH0t φ0(t, ~x) e
iH0t e−iHt
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Now since [H,H0] 6= 0, we cannot write eiHt e−iH0t as ei(H−H0)t = eiHint.

To overcome this problem, define the operator

U(t) ≡ eiH0te−iHt

Then:

φ(~x, t) = U(t)† φ0(~x, t)U(t)

We would now like to express U(t) purely in terms of Hint. To do this, we use the trick of

first obtaining a differential equation for U(t):

∂U

∂t
= i eiH0t(H0 −H) e−iHt

= −i eiH0tHint e
−iHt

= −i eiH0tHint e
−iH0t eiH0te−iHt

= −iHI(t)U(t)

where we have defined:

HI(t) = eiH0tHint e
−iH0t

called the “interaction-picture Hamiltonian”. Note that this Hamiltonian is constructed in

terms of the field φ0, which is sometimes known as the “interaction picture field”.

The differential equation we have derived:

i
∂U

∂t
= HI(t)U

is like a time-dependent Schrödinger equation (with a time-dependent Hamiltonian) for U !

We can write a formal solution for it as:

U(t) = T
{

e−i
R t
0

dt′HI (t′)
}

where T is our friend the “time-ordering” symbol. Without it, the exponential would not be

a solution because HI(t1) and HI(t2) do not commute. The T symbol makes sure that when

we differentiate, we pull out an HI(t) at the left-most point as desired.

Now consider the state |Ω〉 defined by (H0 + Hint)|Ω〉 = E0|Ω〉 where E0 is the minimum

eigenvalue of H = H0 +Hint. We would like to find a relation between |Ω〉 and |0〉. For this,

note that if |n〉 are the eigenstates of the full Hamiltonian H and En are the corresponding

24



eigenvalues, then:

e−iHt|0〉 =
∑

n

e−iEnt|n〉〈n|0〉

= e−iE0t|Ω〉〈Ω|0〉+
∑

n 6=0

e−iEnt|n〉〈n|0〉

= e−iE0t

(

|Ω〉〈Ω|0〉+
∑

n 6=0

e−i(En−E0)t|n〉〈n|0〉
)

We can remove the contribution of all terms except the first one by taking a limit t → ∞
keeping a slightly negative imaginary part. Thus,

lim
T→∞(1−iǫ)

e−iHT |0〉 = lim
T→∞(1−iǫ)

e−iE0T |Ω〉〈Ω|0〉

We assume the right hand side above is nonzero, i.e. that the true vacuum |Ω〉 has some

overlap with the free vacuum |0〉.

Hence we find that:

|Ω〉 = lim
T→∞(1−iǫ)

e−iHT |0〉
e−iE0T 〈Ω|0〉

We can temporarily forget the normalising factor on the RHS and restore it later. Then the

RHS can be written in terms of U(T ). Because H0|0〉 = 0, we can write:

e−iHT |0〉 = e−iHT eiH0T |0〉 = U †(−T )|0〉

Therefore

|Ω〉 ∼ lim
T→∞(1−iǫ)

U †(−T )|0〉

upto a normalisation.

Similarly, by starting with

〈0|e−iHt

and performing the analogous manipulations, one can show that:

〈Ω| ∼ lim
T→∞(1−iǫ)

〈0|U(T )

We will restore the normalisation by simply dividing the final answer by 〈Ω|Ω〉.

Recalling that φ(x) = U(x0)†φ0(x)U(x0) and φ(y) = U(y0)
†φ0(y)U(y0), and taking first

x0 > y0, we write:

〈Ω|φ(x)φ(y)|Ω〉 ∼ lim
T→∞(1−iǫ)

〈0|U(T )U †(x0)φ0(x)U(x0)U(y0)†φ0(y)U(y0)U †(−T )|0〉
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Now use:

U(T )U †(x0) = T
(

e
−i

R T
x0

HI (t′)dt′
)

which holds because T is a much later time than x0 (at the end we will take T →∞). Indeed

all fields are in time order, so we can write the RHS above as:

lim
T→∞(1−iǫ)

〈0|T
(

U(T )U †(x0)φ0(x)U(x0)U(y0)†φ0(y)U(y0)U †(−T )
)

|0〉

If we started with x0 > y0, we would get exactly the same result, since the RHS has time-

ordering built into it.

Therefore we have shown that:

〈Ω|T (φ(x)φ(y)) |Ω〉 = lim
T→∞(1−iǫ)

〈0|T
(

U(T )U †(x0)φ0(x)U(x0)U(y0)†φ0(y)U(y0)U †(−T )
)

|0〉

Inside the time ordering we can move around operators as we like. Therefore we can write

the RHS as:

lim
T→∞(1−iǫ)

〈0|T
(

φ0(x)φ0(y)U(T )U †(x0)U(x0)U †(y0)U(y0)U †(−T )
)

|0〉

= lim
T→∞(1−iǫ)

〈0|T
(

φ0(x)φ0(y)U(T )U †(−T )
)

|0〉

Now

U(T )U †(−T ) = T
(

e−i
R T
0

dt′HI(t′)
)

T
(

ei
R −T
0

dt′HI(t′)
)

= T
(

e−i
R T
−T

dt′HI(t′)
)

So, after restoring the normalisation, we have finally arrived at a result of great importance:

〈Ω|T (φ(x)φ(y)) |Ω〉
〈Ω|Ω〉 = lim

T→(1−iǫ)

〈0|T
(

φ0(x)φ0(y)e
−

R T
−T

dt′HI(t′)
)

|0〉

〈0|T
(

e−
R T
−T

dt′HI(t′)
)

|0〉

It is easy to convince oneself that this result generalises to a product of any number of fields.

1.10 Wick’s theorem

Having deriving the general result:

〈Ω|T (φ(x1) · · ·φ(xn)) |Ω〉
〈Ω|Ω〉 = lim

T→∞(1−iǫ)

〈0|T
(

φ0(x1) · · ·φ0(xn)e−i
R T
−T

HIdt
)

|0〉

〈0|e−i
R T
−T

HIdt|0〉
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we now need some rules to manipulate the RHS. This is made up entirely out of free fields.

Therefore we essentially need a rule to compute:

〈0|T (φ0(x1) · · ·φ0(xm)) |0〉

for all possible m, in free field theory.

In deriving these rules we temporarily go back to free field theory and drop the “0” index

on φ. The rule we are trying to derive is called “Wick’s theorem”.

Let us now define the concept of “normal ordering”. This puts creation operators to the

left and annihilation operators to the right. In terms of φ±, this just puts φ+ to the right

of φ−. The key property of normal ordered products is that their vacuum expectation value

vanishes.

Wick’s theorem is a relation between time ordering and normal ordering. We now derive it

for a few special cases and then state the general result without proof.

We start by considering the time-ordered product of two fields:

T (φ(x1)φ(x2)) = θ(t1 − t2)φ(x1)φ(x2) + θ(t2 − t1)φ(x2)φ(x1)

= θ(t1 − t2)
(

φ+(x1)φ+(x2) + φ+(x1)φ−(x2) + φ−(x1)φ+(x2) + φ−(x1)φ−(x2)
)

+ θ(t2 − t1)
(

φ+(x2)φ+(x1) + φ+(x2)φ−(x1) + φ−(x2)φ+(x1) + φ−(x2)φ−(x1)
)

= φ+(x1)φ+(x2) + φ−(x1)φ−(x2)

+ θ(t1 − t2)
(

φ+(x1)φ−(x2) + φ−(x1)φ+(x2)
)

+ θ(t2 − t1)
(

φ+(x2)φ−(x1) + φ−(x2)φ+(x1)
)

On the other hand, the normal ordered product of the two fields is:

:φ(x1)φ(x2) : = φ+(x1)φ+(x2) + φ−(x1)φ+(x2) + φ−(x2)φ+(x1) + φ−(x1)φ−(x2)

Thus:

T (φ(x1)φ(x2))− :φ(x1)φ(x2) : = θ(t1 − t2)(φ+(x1)φ−(x2) + φ−(x1)φ+(x2))

+ θ(t2 − t1)(φ+(x2)φ−(x1) + φ−(x2)φ+(x1))

−(θ(t1 − t2) + θ(t2 − t1))[φ−(x1)φ+(x2) + φ−(x2)φ+(x1)]

= θ(t1 − t2)[φ+(x1), φ−(x2)] + θ(t2 − t1)[φ+(x2), φ−(x1)]

= 〈0|T (φ(x1)φ(x2))|0〉
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where the last equality was shown when we discussed the Feynman propagator.

Thus we have shown that:

T (φ(x1)φ(x2)) = : φ(x1)φ(x2) : + 〈0|T (φ(x1)φ(x2))|0〉
This is the first example of Wick’s theorem. If we take the vacuum expectation value

on both sides, we get a trivial identity because the vev of the normal ordered term van-

ishes. The content of the theorem becomes nontrivial if we look at higher point functions

T (φ(x1) · · ·φ(xn)), n > 2. Applying the same steps as above to the four-point function, and

using the shorthand notation φi ≡ φ(xi), we find:

T (φ1φ2φ3φ4) = :φ1φ2φ3φ4 :

+ :φ1φ2 : 〈0|T (φ3φ4)|0〉+ :φ1φ3 : 〈0|T (φ2φ4)|0〉+ :φ1φ4 : 〈0|T (φ2φ3)|0〉

+ :φ2φ3 : 〈0|T (φ1φ4)|0〉+ :φ2φ4 : 〈0|T (φ1φ3)|0〉+ :φ3φ4 : 〈0|T (φ1φ2)|0〉

+〈0|T (φ1φ2)|0〉〈0|T (φ3φ4)|0〉+ 〈0|T (φ1φ3)|0〉〈0|T (φ2φ4)|0〉

+〈0|T (φ1φ4)|0〉〈0|T (φ2φ3)|0〉
This time we get a nontrivial result by taking the vev on both sides:

〈0|T (φ1φ2φ3φ4)|0〉 = 〈0|T (φ1φ2)|0〉〈0|T (φ3φ4)|0〉+ 〈0|T (φ1φ3)|0〉〈0|T (φ2φ4)|0〉

+ 〈0|T (φ1φ4)|0〉〈0|T (φ2φ3)|0〉

= DF (x12)DF (x34) + DF (x13)DF (x24) + DF (x14)DF (x23)

where we have introduced the shorthand xij = xi − xj . This reduces the calculation of

four-point functions to products of pairs of Feynman propagators in all possible ways.

The above result is easily extended to all even-point functions in free field theory, which

reduce to products of two-point functions in all possible distinct ways. The total number of

possible “two-point” contractions among 2n points is easily seen to be (2n − 1)!! = (2n −
1)(2n− 3) · · · . For the 4-point function we have 3 independent contractions, as above, while

for the 6-point function we would get 15 independent contractions. Odd n-point functions

vanish.

1.11 Interactions via Wick’s theorem

Now we turn to the interacting theory. The new feature is that we encounter fields coming

from expanding the exponential of HI . Thus, consider for example the leading correction to

the propagator in the theory with Hint =
λ

4!

∫

d3xφ4.
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We find 〈Ω|T (φ(x1)φ(x2))|Ω〉

= 〈0|T (φ(x1)φ(x2))|0〉 − i
λ

4!

∫

d4y 〈0|T (φ(x1)φ(x2)φ
4(y))|0〉

The second term is a 6-point function, which we certainly know how to compute using Wick’s

theorem. The new feature is that four of the fields are at the same space-time point, and

there is an integral over all possible locations of that point.

Wick’s theorem applied to this 6-point function gives:

〈0|T (φ(x1)φ(x2)φ
4(y))|0〉 = 3DF (x1 − x2)DF (y − y)DF (y − y)

+ 12DF (x1 − y)DF (x2 − y)DF (y − y)

Diagrammatically we can represent this by:

In this diagram the points x1 and x2 are labelled by “1” and “2”. Each line represents a

Feynman propagator from the starting point to the end-point of the line. Since we are work-

ing to first order in the interaction, the first term in the expansion of e−i
R

HI is represented

by a single four-point vertex. In general the number of four-point vertices in the diagram

counts the order of perturbation theory. Such diagrams with vertices and lines, depicting

the possible terms arising from Wick contraction in perturbation theory, are called Feynman

diagrams.

We see a variety of potential problems with this result. For the second term, corresponding

to the connected diagram, we get a factor of DF (y − y) = DF (0). Now,

DF (0) =

∫

d4p
i

p2 −m2

which is divergent. The divergence comes from the region of large |~p|, so it is an ultraviolet

divergence.
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However, in the first term, which diagrammatically corresponds to a loop disconnected from

the freely propagating particle, the integrand is y-independent! This integral therefore ap-

pears to give a divergence proportional to the volume of space-time. This is multiplied by a

factor (DF (0))2 which as we have seen above is also divergent.

In general we should always imagine cutting off ultraviolet divergences using a large momen-

tum cutoff, |~p| < Λ. This is called a UV cutoff. For the volume divergence we can put the

system in a finite box in space-time, which is called an IR cutoff. The problem is then how

to remove the cutoffs. We will return to this later.

Fortunately we can easily dispose of the problem of disconnected diagrams. The “figure of

8” diagram above seems rather unphysical, after all: a virtual interaction takes place at an

arbitrary point y while the external particle propagates freely from x1 to x2. In fact, this

term is cancelled by a similar term coming from the denominator, where we have to expand:

〈0|T (e−i
R

HI )|0〉 = 1− 3
iλ

4!

∫

d4y DF (y − y)DF (y − y) + · · ·

Thus we have, to order λ,

〈Ω|T (φ(x)φ(y))|Ω〉
〈Ω|Ω〉

=
DF (x1 − x2)(1− 3 iλ

4!

∫

d4y DF (0)2)− 12 iλ
4!

∫

d4y DF (0)DF (x1 − y)DF (x2 − y) + · · ·
1− 3 iλ

4!

∫

d4y DF (0)2 + · · ·

= DF (x1 − x2)
(

1− 3 iλ
4!

∫

d4y DF (0)2
) (

1 + 3 iλ
4!

∫

d4y DF (0)2
)

− 12 iλ
4!

∫

d4y DF (x1 − y)DF (x2 − y)DF (0) +O(λ2)

Since we are working to order λ, we see that:

(

1− 3 iλ
4!

∫

d4y DF (0)2
) (

1 + 3 iλ
4!

∫

d4y DF (0)2
)

= 1 +O(λ2)

and the disconnected part has cancelled! This is an example of a general phenomenon. All

disconnected diagrams can be shown to be cancelled by denominator contributions. More-

over this uses up all denominator contributions, so we can consistently ignore disconnected

diagrams as well as denominators.

Therefore, to calculate any correlation function:

〈0|T (φ(x1)φ(x2) · · ·φ(xn)) |0〉

we only need to keep connected diagrams, by which we mean all parts of the diagram are

connected to at least one of the external legs x1, x2, · · · , xn (there is another meaning of
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“connected” in which the diagram is required to have all points connected to each other.

This may arise in later discussions).

As an example, the connected diagrams for the four-point function:

〈0|T (φ(x1)φ(x2)φ(x3)φ(x4)) |0〉
are given to order λ by:

1.12 Momentum space

Feynman diagrams are shorthand symbols for numbers depending on external positions as

well as the coupling constant λ and mass m. But in practice we rarely produce particles

at fixed positions. Instead they are produced at fixed momenta so that they can scatter.

Therefore it is more appropriate to consider the Fourier transform of the position space n-

point function that we have studied up to now. In fact we will see that momentum space is

more natural and simpler than position space.

We have seen that some diagrams give divergent answers. Among other things we will show

in what follows, using momentum space, that only diagrams with closed loops can have UV

divergences.

Define:

D̃F (k) =
i

k2 −m2 + iǫ
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which is the Fourier transform of the Feynman propagator by virtue of the relation:

DF (x− y) =

∫

d4k

(2π)4
D̃F (k)e−ik·(x−y)

Now consider the diagram:

This can be evaluated as:

−iλ
∫

d4yDF (x1 − y)DF (x2 − y)DF (x3 − y)DF (x4 − y)

= −iλ
∫

d4y
4
∏

i=1

(
∫

d4ki

(2π)4

1

(k2
i −m2 + iǫ)

)

e−i
P

i ki·(xi−y)

The integral over y is:
∫

d4y eiy·
P

i ki = (2π)4δ4
(

∑

i

ki

)

Thus the above expression is equal to:

−iλ
∫ 4
∏

i=1

(

d4ki

(2π)4

1

(k2
i −m2 + iǫ)

)

(2π)4δ
(

∑

i

ki

)

e−i
P

i ki·xi

Thus the contribution of this diagram to G(x1, · · · , x4) = 〈Ω|T (φ(x1) · · ·φ(x4))|Ω〉 is:

∫

∏

i

d4ki

(2π)4
e−i

P

ki·xi (2π)4δ
(

∑

i

ki

)

G̃(k1, · · · , k4)

where:

G̃(k1, · · · , k4) = −iλ
4
∏

i=1

1

k2
i −m2 + iǫ

We refer to G̃(k1, · · · , k4) as the “momentum space correlation function” although it is not

G̃(k1, · · · , k4) but rather (2π)4δ(Σki)G̃(k1, · · · , k4) that is the Fourier transform ofG(x1 · · ·x4).

An overall momentum-conserving delta-function occurs automatically for every Feynman di-

agram.
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In fact, the above diagram could occur as part of a Feynman diagram, so we actually find a

momentum-conserving δ-function at each vertex of a Feynman diagram.

Now, apart from the combinatoric factors (which are the same as in position space) we can

describe momentum-space Feynman diagrams by giving each leg an independent momentum,

then assigning a propagator

D̃F (k) =
1

k2 −m2 + iǫ

to each line, putting in a momentum-conserving δ-function at each vertex and then inte-

grating over each momentum except the ones directly connected to external points. All

momenta should have arrows describing their orientation. The arrows are arbitrary but

must be assigned once and for all at the start. The signs of the momenta appearing in

momentum-conserving δ-functions will be determined by these arrows.

Example: Consider a particular one-loop correction to the four-point function:

We must integrate over k5, k6 as these are not any of the external momenta. Now we have

the δ-functions:

δ4(k1 + k3 + k5 − k6) δ
4(k2 + k4 + k6 − k5)

A δ-function contributes only when its argument vanishes, so we can substitute the vanishing

of the argument of the second δ-function into the first δ-function, to get:

= δ4(k1 + k2 + k3 + k4) δ
4(k2 + k4 + k6 − k5)

As expected, there is the overall δ-function that conserves external momenta. The other one

fixes, say, k6 in terms of k5 and external momenta, so we can write k6 = k5 − k2 − k4 and

forget the d4k6 integration. That leaves only an integral over k5.

In this way it is easy to see that there is one momentum integral for every closed loop.

The physical interpretation is that there is a “virtual particle” circulating in the loop. This

particle does not need to satisfy k2 = m2, nor does it need to have a positive value for k0.

However, external momenta should satisfy k2 = m2 and this property is referred to as being

“on-shell”. Internal momenta such as loop momenta, by contrast, are “off-shell”.
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A puzzle here is that if the external momenta k1, · · · , k4 are placed on-shell then the external

propagators all diverge. Therefore temporarily we will allow even external momenta to be

off-shell. Keeping the external legs of correlation functions off-shell can be very useful to

develop recursive formulae among them. When we connect the n-point function to physically

measured quantities, specifically the scattering matrix or S-matrix, we will show that external

propagators should be dropped and then the external momenta put on-shell.

Returning to the diagram we drew above, the corresponding loop integral is:

∫

d4k

(2π)4

i

k2 −m2

i

(k − k2 − k2)2 −m2

We see that as k → ∞, the numerator and denominator both scale like |k|4. Thus the

integral is logarithmically divergent in the ultraviolet. We will discuss how to deal with such

divergent integrals at a later stage.
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2 Vector fields

2.1 Definition of vector field

A Lorentz transformation acts on space-time coordinates as:

xµ → x′µ = Λµ
νx

ν

The matrix Λ satisfies:

Λµ
αΛν

β ηµν = ηαβ , Λµ
αΛν

β η
αβ = ηµν

Suppose we now consider a field Aµ(x) which transforms in the same way:

A′µ(x′) = Λµ
νA

ν(x)

Such a field would be called a vector field rather than a scalar field. If we lower the index of

this field via:

Aµ(x) ≡ ηµνA
ν(x)

then we find that it transforms as:

A′
µ(x′) ≡ ηµαA

′α(x′) = ηµαΛα
νA

ν(x) = ηµαΛα
νη

νβAβ(x) = (Λ−1T ) β
µ Aβ(x)

where we have used the result:

ηµαΛα
νη

νβ = (Λ−1 T ) β
µ

which is straightforward to prove and is left as an exercise.

If we are given a scalar field φ(x), then ∂µφ(x) provides an example of a vector field:

∂′µφ
′(x′) = (Λ−1 T ) ν

µ ∂νφ(x)

However our main interest is to consider vector fields Aµ that are fundamental and not

necessarily of the form ∂µφ for some scalar field.

2.2 Lagrangian for vector fields

What sort of Lagrangian can we write for such a field? By analogy with Klein-Gordon theory

we might guess:

L =
1

2
∂µAν∂

µAν
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whose equation of motion is:

∂µ∂
µAν = 0

In this case, Aν (ν = 0, 1, 2, 3) behaves like 4 copies of a Klein-Gordon field (we will return

to the possibility of mass terms later).

However, this immediately leads to a problem. The canonical formalism gives

πµ =
δL
δȦµ

= Ȧµ

Then the canonical commutator should be

[Aµ(t, ~x), πν(t, ~x′)] = iδµ
νδ

3(~x− ~x′)

This in turn means that

[Aµ(t, ~x), Ȧν(t, ~x
′)] = iηµνδ

3(~x− ~x′)

which leads to oscillators aµ~k, a
†

µ,~k
satisfying

[aµ~k, a
†

ν~k′
] = (2π)3ηµνδ

3(~k − ~k′)

This means

[a0,~k, a
†

0,~k′
] = (2π)3δ3(~k − ~k′)

while

[ai,~k, a
†

j,~k′
] = −δij(2π)3δ3(~k − ~k′)

Thus three of the four oscillators seem to have an unconventional – sign in their commutator!

We would be better off taking a – sign in the original canonical commutator. This can be

achieved by flipping the Lagrangian to

L = −1

2
∂µAν∂

µAν

= −1

2
∂µA0∂

µA0 +
1

2
∂µAi∂

µAi

Now πµ = −Ȧµ and

[Aµ(~x), Ȧν(~x
′)] = −iηµνδ

3(~x− ~x′)
which in turn means that

[aµ,~k, a
†

ν,~k′
] = −ηµν(2π)3δ3(~k − ~k′)
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Now the space-like oscillators have the correct sign, however for the time-like oscillator we

find:

[a0,~k, a
†

0,~k′
] = −(2π)3δ3(~k − ~k′)

An oscillator with a minus sign in its commutator is very badly behaved. To see this, consider

the state:

a†
0,~k
|0〉

Its norm is given by

〈0|a0,~k a
†

0,~k′
|0〉 = 〈0|[a0,~k, a

†

0,~k′
]|0〉 = −(2π)3δ3(~k − ~k′)

which means that this is a negative norm state. This leads to negative probabilities and a

physically meaningless theory.

We conclude that the Lagrangian above is wrong. In the process, we see that copying the

Klein-Gordon Lagrangian for a field with vector indices simply cannot work. The reason is

that a Lorentz covariant commutation relation inevitably involves ηµν and somewhere there

is bound to be a negative sign.

Recall that Maxwell’s equations, abstracted from experimental observations, are:

∂µ(∂µAν − ∂νAµ) = 0

which can be more compactly written:

∂µFµν = 0 where Fµν = ∂µAν − ∂νAµ

Notice that Fµν = −Fνµ.

The above equations of motion come from the Lagrangian:

L = −1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

= −1

2
∂µAν∂

µAν +
1

2
∂µAν∂

νAµ

= −1

4
FµνF

µν (1)

In the second line, the first term is what we had tried without success but now there is a

second term with a different arrangement of indices. Does this Lagrangian manage to avoid

the problem of negative norm states?

Right away we see an encouraging sign that the problem of negative-norm states might be

absent. When we compute canonical momenta, we find:

πµ =
δL
δȦµ

= −F 0µ
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By antisymmetry F 00 = 0, so we have π0 = 0. Thus the potentially troublesome commutator

is absent. In fact there is no canonical commutation relation for A0! It turns out that, for

this reason, A0 is not a dynamical variable at all.

To understand the source of this unusual property, we note that the Lagrangian of electro-

dynamics is unchanged under the transformation:

Aµ → Aµ + ∂µλ(x)

for an arbitrary function λ(x). This is called a gauge transformation. To demonstrate the

invariance, simply note that under the transformation,

Fµν → ∂µAν + ∂µ∂νλ− ∂νAµ − ∂ν∂µλ = Fµν

so Fµν is gauge invariant and consequently so is any Lagrangian made out of it.

Gauge invariance means that the space of gauge field configurations is “degenerate”. Any

configuration Aµ(x) and another one Aµ(x) + ∂µλ(x) have the same Lagrangian. And this

is not just a finite parameter degeneracy but an infinite parameter one, parametrised by the

whole function λ(x).

The physical interpretation for this is that the configurations Aµ, Aµ + ∂µλ are physically

equivalent. This means that the theory has less physical content than it originally seems. In

fact we can simplify it down to its physical degrees of freedom, but at the cost of manifest

Lorentz invariance.

Gauge invariance seems like a complicated and undesirable feature because it introduces a

redundancy in the field configurations. However it is necessary in order to reconcile Lorentz

invariance with unitarity (the fact that all physical states have positive norm). Note that

with gauge invariance, there is no longer the possibility of adding a mass term m2AµA
µ to

this theory. Such a term would violate gauge invariance and ultimately bring back negative-

norm states.

As a matter of terminology, we remark that vector fields with gauge invariance are often

referred to as “gauge fields”. The simple type of gauge invariance discussed here, where Aµ

is a single field and λ(x) is a single function, has the property that the gauge transforma-

tions commute with each other. Indeed, under two successive gauge transformations with

parameters λ1(x), λ2(x), we have:

Aµ → (Aµ + ∂µλ1) + ∂µλ2 = (Aµ + ∂µλ2) + ∂µλ1

Therefore it is referred to as “Abelian gauge invariance”. Later we will discuss a generali-

sation called “non-Abelian gauge invariance” in which two different gauge transformations

will not commute with each other. Both types of gauge invariance are relevant in nature.
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2.3 Coulomb gauge

We now discuss ways to “fix” the gauge invariance. In this way the physical content of the

theory gets revealed. We start by choosing a gauge called Coulomb gauge. For this, given

any configuration Aµ(t, ~x), start by choosing a gauge parameter:

λ(t, ~x) = −
∫ t

A0(t
′, ~x) dt′

Under a gauge transformation with this parameter we see that:

A0 → A0 + ∂0λ = 0

In this way we can make A0 disappear from the theory altogether. We see that it was a

“gauge artifact”, rather than a physical configuration to be quantised.

Now let us perform a further gauge transformation involving λ(~x) that is independent of

time. For such λ, we have:

A0 → A0 + ∂0λ(~x) = 0

Ai → Ai + ∂iλ(~x)

So the A0 = 0 condition is preserved. We see that there remains a redundancy in the Ai.

Next consider the equations of motion: ∂µFµν = 0. If we set the free index ν to be 0, we get:

∂iF0i = 0

Since we have set A0 = 0, this implies

∂0(∂
iAi) = 0

so we see that the spatial divergence of Ai is time independent.

If instead we set ν = j in the equation of motion, we find:

∂0F0j + ∂iFij = 0

and therefore:

∂0∂0Aj + ∂i(∂iAj − ∂jAi) = 0

Without the last term, this equation is quite simple, namely a Klein-Gordon equation for

the three oscillators Ai. To remove the last term we notice that:

∂iAi → ∂iAi + ∂i∂iλ
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Therefore if we choose λ(~x) to solve the Poisson equation

∂i∂iλ = −∂ jAj

then making a gauge transformation with this λ, we find:

∂iAi → ∂iAi + ∂i∂iλ = 0

Importantly, once we have set ∂iAi = 0 in this way, the A0 equation of motion ∂0(∂
iAi) = 0

guarantees that ∂iAi remains 0 for all time.

Now the equations of motion simplify to:

�Aj = 0

with the constraint δjAj = 0.

The free vector field theory no longer looks like four copies of the Klein-Gordon field, but

like three copies with one constraint. Since we eliminated A0 using gauge transformations,

it is clear that there are no negative norm states. The remaining fields Ai can be canonically

quantised in terms of oscillators, all of which have positive norm.

The constraint reduces the physical Hilbert space built out of the oscillators to that generated

by only two independent oscillators.

The spin of the particle associated to a vector field Aµ is 1 in units of ~. This can be

demonstrated formally by constructing the angular momentum operator and acting with

it on a one-particle state created by this field. Since a one-particle state cannot carry

orbital angular momentum, whatever angular momentum we find in this way must necessarily

correspond to the spin.

Thus the particle associated to the Abelian gauge field is a massless spin-1 particle. This

is identified with the photon. The two independent oscillators surviving after we gauge-fix

and impose constraints are associated with the two transverse polarisations of the photon.

2.4 Lorentz gauge

Let us briefly consider another method of gauge-fixing. Suppose we do not want to break

manifest Lorentz invariance (which happens in the Coulomb gauge A0 = 0, ∂iAi = 0). A

simple covariant gauge condition is ∂µAµ(x) = 0, called the Lorentz gauge. In this gauge,

the Lagrangian becomes:

L = −1

2
(∂µAν)

2 = −1

2
(∂µA0)

2 +
1

2
∂µAi∂

µAi
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So Ai behave like three massless Klein-Gordon fields. But in this gauge there is also A0 to

worry about. In fact, now it has a canonical momentum! We see that:

π0 =
δL
δȦ0

= −Ȧ0

We will treat this field along with the three others as a valid dynamical variable even though

it gives negative-norm states. At the end, the constraint ∂µAµ will be seen to eliminate these

states.

The equation of motion reduces in this gauge to:

∂µ∂µAν = 0

As usual, we must check what residual gauge invariance is present after fixing ∂µAµ = 0.

Sending Aµ → Aµ + ∂µλ, we see that this preserves the gauge if ∂µ∂µλ = 0. This is just the

equation of motion of a free massless scalar field.

The situation simplifies considerably in momentum space. Let Ãµ(k) be the Fourier trans-

form of Aµ(x). The gauge condition becomes kµÃµ(k) = 0, and the residual gauge invariance

becomes

Ãµ(k) → Ãµ(k) + kµλ̃(k)

where λ̃ is any function of k, subject to the condition that kµkµλ̃(k) = 0. Therefore we must

restrict to kµ satisfying kµkµ = 0, which is the on-shell condition for a massless particle.

Thus we see that the Lorentz gauge has two features:

(i) a condition: kµÃµ(k) ∼ 0

(ii) a redundancy: Ãµ(k) ∼ Ãµ(k) + kµλ̃(k)

where the ∼ symbol means the configurations Ãµ(k) and Ãµ(k) + kµλ̃(k) are identified.

The above features guarantee that two of the four possible polarisations decouple from the

theory. To see this, consider one-particle states in the free theory. and write:

Aµ(~x, t) =

∫

d3k

(2π)3

1
√

2ω~k

(

aµ,~k e
−ik·x + a†

µ,~k
eik·x

)

Imagine that aµ,~k, a
†

µ,~k
are quantised as usual. Now consider the four states a†

µ,~k
|0〉 and take

the most general linear combination:

ξµa†
µ,~k
|0〉

The gauge conditions are:

kµa†
µ,~k
|0〉 ∼ 0

a†
µ,~k
|0〉 ∼ a†

µ,~k
|0〉+ kµ λ~k|0〉
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where λ~k is a mode of λ.

Now choose a Lorentz frame in which kµ = k(1, 0, 0, 1). Then kµ = k(1, 0, 0,−1) and the

first condition gives:

a†
0,~k
|0〉 ∼ a†

3,~k
|0〉

where again ∼ means we identify the two states.

The second gives:

ξµkµ = 0 ⇒ ξ0 + ξ3 = 0

Therefore the states we are considering become

ξ0a†
0,~k
|0〉+ ξ1a†

1,~k
|0〉+ ξ2a†

2,~k
|0〉+ ξ3a†

3,~k
|0〉 = ξ0

(

a†
0,~k
|0〉 − a†

3,~k
|0〉
)

+ ξ1a†
1,~k
|0〉+ ξ2a†

2,~k
|0〉

∼ ξ1a†
1,~k
|0〉+ ξ2a†

2,~k
|0〉

since a†
0,~k
|0〉 − a†

3,~k
|0〉 ∼ 0.

This leaves behind the two linearly independent states

a†
1,~k
|0〉, a†

2,~k
|0〉

describing a transverse photon.

The new thing is that the gauge condition did not break Lorentz invariance. Only in im-

plementing it did we choose a Lorentz frame for kµ. This fits with our intuitive picture of a

light ray that it oscillates transverse to its direction of propagation.

2.5 Scalar electrodynamics

Now let us consider coupling gauge fields Aµ to complex scalars φ, φ⋆. First recall that for

complex scalars, a typical Lagrangian would be:

L = ∂µφ
⋆∂µφ−m2φ⋆φ− λ

6
(φ⋆φ)2

The corresponding equations of motion are:

∂µ∂µφ+m2φ+
λ

3
φ∗φ2 = 0

∂µ∂µφ
∗ +m2φ∗ +

λ

3
φφ∗2 = 0
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Notice that this Lagrangian is invariant under

φ(x) → eiαφ(x)

φ⋆(x) → e−iαφ⋆(x)

but only as long as α is constant. The infinitesimal version of the above transformation,

assuming α to be small and keeping only the lowest order term, can be written:

δφ(x) = iαφ(x), δφ∗(x) = −iαφ∗(x)

Transformations with constant parameters are called global symmetries.

Related to the above fact, this theory has a current that is conserved due to the equations of

motion. A current is simply any 4-vector made out of fields and their derivatives. Conserved

currents are associated to symmetries of the Lagrangian. The relevant current here turns

out to be2:

jµ = i (φ∗∂µφ− φ∂µφ
∗)

To show that it is conserved, we compute its 4-divergence:

∂µjµ = i (∂µφ∗∂µφ+ φ∗∂µ∂µφ− ∂µφ ∂µφ
∗ − φ ∂µ∂µφ

∗)

= i

(

−m2φ∗φ− λ

3
φ∗2φ2 +m2φ∗φ+

λ

3
φ∗2φ2

)

= 0

To this current is associated a conserved charge:

Q =

∫

d3x j0 = i

∫

d3x (φ∗φ̇− φ φ̇∗)

We now show that this charge treated as an operator (and multiplied by the parameter α)

generates the same symmetry transformation via the canonical commutation relations. One

may think of e−iQα as the generator of the symmetry transformation in much the same way

as e−iHt generates time translations in quantum mechanics. Then the transformation of a

field under a finite symmetry transformation is:

φ(x)→ e−iQαφ(x) eiQα, φ∗(x)→ e−iQαφ∗(x)eiQα,

The infinitesimal version of this is the change of φ to first order in α, which is easily seen to

be:

δφ(x) = −iα[Q, φ(x)] = iαφ(x)

δφ∗(x) = −iα[Q, φ∗(x)] = −iαφ∗(x)

2It can be derived using the Noether procedure.
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where we have used:

[φ∗(t, ~x), φ̇(t, ~y)] = [φ(t, ~x), φ̇∗(t, ~y)] = iδ3(~x− ~y)

If we allow α to depend on x, which makes it a local transformation, the kinetic term in the

Lagrangian changes as follows:

∂µφ
⋆∂µφ → ∂µ(e−iαφ⋆)∂µ(eiαφ)

= ∂µφ
⋆∂µφ− i∂µαφ

⋆∂µφ+ i∂µα ∂µφ
⋆φ+ ∂µα∂

µαφ⋆φ

Thus by itself the scalar field theory is not invariant under local transformations.

However we can now couple a gauge field Aµ(x) to the complex scalar field such that the

combined system has local (gauge) invariance. We simply make the replacement

∂µφ → (∂µ − ieAµ)φ

in the action, where e is an arbitrary constant which will turn out to be a coupling constant

of the theory. Then, under a gauge transformation that simultaneously acts as:

φ(x) → eiα(x)φ(x)

φ⋆(x) → e−iα(x)φ⋆(x)

Aµ(x) → Aµ(x) +
1

e
∂µα(x)

one can easily check that:

(∂µ − ieAµ)φ → eiα(x)(∂µ − ieAµ)φ

The generalised kinetic term:

(∂µ + ieAµ)φ∗(∂µ − ieAµ)φ

is then gauge invariant, as are the potential terms that depend only on the scalar field.

After adding a kinetic term for the gauge field, the full theory with Lagrangian:

L = (∂µ + ieAµ)φ⋆(∂µ − ieAµ)φ−m2φ⋆φ− λ

6
(φ⋆φ)2 − 1

4
FµνF

µν

is a gauge theory coupled to (scalar) matter. It is called scalar electrodynamics.

Note that in the coupled theory, the original conserved current is coupled to the gauge field

by a coupling of the form:

∼ e

∫

d4x jµAµ
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2.6 Feynman rules for scalar electrodynamics

We close this discussion by providing a summary of the Feynman rules for calculating cor-

relation functions in scalar electrodynamics. For this we need to separate the Lagrangian

into the “free” part which is treated exactly, and the “interacting” part which is treated in

perturbation theory. The free part consists of terms quadratic in the fields:

L0 = ∂µφ
⋆∂µφ−m2φ⋆φ− 1

4
FµνF

µν

while the interaction is everything else:

Lint = ieAµ(φ∗∂µφ− φ ∂µφ∗) + e2AµA
µφ∗φ− λ

6
(φ⋆φ)2

Now the free part gives rise to Feynman propagators for the different fields φ, φ∗, Aµ. We

have:

〈0|T (φ∗(x)φ(y)) |0〉 = DF (x− y)
which is similar to what we saw for real Klein-Gordon fields, except that for complex fields

the propagator connects φ to φ∗.

For the Aµ propagator things are more subtle because we must first fix the gauge. The

easiest gauge for this purpose is Lorentz gauge, for which as we have seen, we should replace

the gauge field kinetic term by:

−∂µAν ∂
µAν

In this gauge the four components of Aµ behave like independent massless Klein-Gordon

fields but the time component has an opposite sign. Thus:

〈0|T (Aµ(x)Aν(y)) |0〉 = −ηµνDF (x− y)
∣

∣

∣

m=0

When we draw Feynman diagrams we need to be careful with two points. One is that the

propagator for the scalar field comes with an arrow depicting the direction of charge flow.

The other is that the gauge field propagator needs a different symbol so we depict it with a

wavy line.

For the interaction Hamiltonian, we have:

Hint = −Lint = −ieAµ(φ∗∂µφ− φ ∂µφ∗)− e2AµA
µφ∗φ+

λ

6
(φ⋆φ)2

We notice that scalar electrodynamics has two coupling constants, e and λ. There is a

familiar quartic self-coupling of φ with coefficient proportional to λ, as well as a new quartic
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coupling −AµA
µφ∗φ with a coefficient proportional to e2. Note that the sign of this term

is such that the interaction for the space components Ai is positive as a sensible potential

should be. The potential for A0 is negative and therefore unbounded below but, as we have

seen earlier, A0 is not a propagating field so we anticipate that the gauge conditions will

remove any problem with that. Finally there is a cubic potential which is new and involves

derivatives. The three interaction vertices can be depicted as:

−iekµ − e2ηµν
λ
6

Scalar electrodynamics describes the physics of an electrically charged spinless particle (and

its antiparticle) coupled to a photon. Since most particles in nature are spin-1
2

fermions, we

will now move on to describe fermions and study electrodynamics further in that context.
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3 Fermions

3.1 Lorentz algebra and Clifford algebra

Lorentz transformations are a set of three rotations (in the xy, yz and zx planes) and three

boosts (with respect to x, y and z). Just as rotations are implemented by three genera-

tors Jx, Jy, Jz, the Lorentz transformations can be implemented by means of six generators

labelled Mµν where M is antisymmetric in µ and ν. The correspondence is:

M01 → boost in x direction

M02 → boost in y direction

M03 → boost in z direction

M23 → rotation about x direction

M31 → rotation about y direction

M12 → rotation about z direction

So in fact the last three are the same as the usual rotation generators Jx, Jy, Jz.

Now we know that rotation generators obey commutation relations like:

[Jx, Jy] = Jz

and cyclic (we use conventions where the generators are anti-Hermitian so there is no i on

the RHS). In non-relativistic quantum mechanics, any specific particle state (wave-function)

transforms under rotations by some matrices which obey the above algebra. For example,

spin-1
2

particles are transformed by the Pauli matrices:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

In the relativistic theory there must be an algebra of commutation relations among all the

Mµν which includes the rotation algebra but also specifies the commutators of boosts with

rotations and boosts with boosts. These commutation relations define the Lorentz algebra

and look as follows:

[Mµν ,Mλρ] = −
(

ηµλMνρ + ηνρMµλ − ηµρMνλ − ηνλMµρ
)

As a simple exercise one can check that if we label M12 = −Jz and cyclic, then the above

commutator implies:

[Jx, Jy] = Jz
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Just as Jx, Jy, Jz are abstract rotation operators that are realised on spin-1
2

fields through

Pauli matrices (and on spin-1 fields in a different way), the Lorentz generators Mµν can also

be thought of as abstract operators which are realised in different ways on different fields.

These different ways are called “representations”. The general action is given, in terms of

the matrix mµν defining the specified representation, as:

e
1

2
ωµνm

µν

Here ωµν are the parameters of the transformation, which specify the amount of rotation

and boost. This is analogous to the generators of time translations or gauge transformations

being exp(−iHt), exp(−iQλ) respectively.

We are already familiar with one representation of the Mµν , called the “vector representa-

tion”. Suppose we take 4× 4 matrices:

(V µν)α
β = ηµαδν

β − ηναδµ
β

One can check that these satisfy the commutation relations of the Lorentz algebra. Because

each V µν has a pair of vector indices, it acts on vector fields. The transformation is:

A′α(x′) =
(

e
1

2
ωµνV

µν)α

β
Aβ(x) =

(

eη ω
)α

β
Aβ(x)

Now we have the identity:

eη ωη
(

eη ω
)T

= η

which is precisely the defining relation of the usual Lorentz transformation matrix Λ. There-

fore we can write:

Λα
β =

(

eη ω
)α

β

and we recover the familiar Lorentz-transformation of vector fields:

A′α(x′) = Λα
βA

β(x)

We have seen that a vector field carries 1 unit of spin. By allowing multiple space-time

indices, we can find more general fields called tensor fields that transform in more complicated

representations of the Lorentz algebra. Being built out of the vector representation, these

are associated to particles of various different integer spins.

However, experimentally it was determined long ago that the spin of an electron is 1
2

in units

of ~. Therefore electrons, and more generally fermions, cannot be described by scalar, vector

or tensor fields. Are there any fields that carry spin 1
2

and if so, how do they transform under

Lorentz transformations?
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It turns out that mathematically there is an additional class of representations of the Lorentz

group, called spinor representations. These arise from the following theorem. Consider the

following algebra that is quite distinct from the Lorentz algebra:

{Γµ,Γν} = 2ηµν

This is called the Clifford algebra.

A state that transforms under the Clifford algebra will be acted on by matrices γµ that

satisfy:

(γµ)ab(γ
ν)bc + (γν)ab(γ

µ)bc = 2ηµνδac

or for short,

{γµ, γν} = 2ηµν

The reason we have introduced the Clifford algebra is that the γµ provide a new representa-

tion of the Lorentz algebra, the spinor representation. This arises as follows. Let

Sµν =
1

4
[γµ, γν]

Using the fact that γµ satisfy the Clifford algebra, one can easily check that Sµν satisfy the

Lorentz algebra:

[Sµν , Sλρ] = −[ηµνSνρ + ηνρSµλ − ηµρSνλ − ηνλSµρ]

The Clifford algebra is simpler than it looks. It simply says:

γµγν = −γνγµ if µ 6= ν

(γµ)2 = +1 µ = 0

= −1 µ = 1, 2, 3.

Also, we have Sµµ = 0 while for µ 6= ν, we simply find:

Sµν =
1

2
γµγν

From what we discussed above, a relativistic field that transforms in the spinor representation

of the Lorentz algebra will take the form ψa with the transformation law being:

ψ′
a(x

′) =
(

e
1

2
ωµνS

µν)

ab
ψb

To determine the range of values of a, b, called spinor indices, we need to determine the

dimension of the γ-matrices. For this, note first that the Pauli matrices σi themselves
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satisfy a Clifford algebra, but only with respect to space directions (hence we have δij rather

than ηµν on the RHS):

{σi, σj} = 2δij

Our strategy will be to construct γ-matrices using tensor products of the Pauli matrices.

As an example consider σ1 ⊗ σ2:

σ1 ⊗ σ2 =

(

0 −iσ1

iσ1 0

)

=









0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0









Tensor products satisfy the multiplication rule:

(A⊗ B)(C ⊗D) = AC ⊗BD

From this it is easy to see that the four 4× 4 matrices:

σ1 ⊗ σ1

σ1 ⊗ σ2

σ1 ⊗ σ3

σ2 ⊗ 11

all mutually anticommute and all of them square to 1.

To make a set of γ-matrices that obey the Clifford algebra, we simply need to multiply three

of them by i, for example:

γ0 = σ1 ⊗ σ1

γ1 = iσ1 ⊗ σ2

γ2 = iσ1 ⊗ σ3

γ3 = iσ2 ⊗ 11

There are two important representations that we will discuss later on. All the representations

of interest to us are 4 × 4, which is the minimum allowed value. Therefore the fields that

transform under them will be 4-component fields.

The full γ-matrix algebra is made up of the identity matrix 11 and all γµ as well as their

products. There are altogether 16 independent matrices. A particularly useful matrix in this

set is:

γ5 ≡ iγ0γ1γ2γ3
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where the coefficient i has been introduced so that:

γ†5 = γ5, (γ5)
2 = 1

The important identity:

γ5γ
µ = −γµγ5

is easy to derive. In the representation listed above, we find that:

γ5 = σ3 ⊗ 11

and can see explicitly that it verifies the above identities.

In terms of the above matrices, the γ-matrix algebra consists of the 16 matrices:

11, γµ, γ5, γ5γ
µ, Sµν

where as we have seen, Sµν = 1
4
[γµ, γν ].

It is easy to see that all other combinations of the γ-matrices are linearly dependent on the

ones listed above. For example γ5S
µν can be re-expressed in terms of Sµν , γµγνγλ can be

re-expressed in terms of γ5γ
ρ etc.

3.2 Spinor fields and Dirac equation

With the above results, we now define a spinor field ψa(x), a = 1, 2, 3, 4, as a field that

transforms as:

ψ′
a(x

′) =
(

e
1

2
ωµνS

µν)

ab
ψb

under Lorentz transformations.

To write a field equation, we need to ask ourselves what could be the possible building blocks

of the equation. For a free field, the equation will be linear in the field ψa. As before we

may then guess that each component of a spinor should satisfy a Klein-Gordon equation (of

second-order in derivatives).

However there is a new possibility with spinors and it turns out that nature makes use of it.

This possibility arises because the differential operator:

γµ
ab∂µ

when acting on a spinor, gives another quantity that also transforms as a spinor. In other

words, under

ψ → e
1

2
ωλρS

λρ
ψ
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one can show that:

γµ∂µψ → e
1

2
ωλρS

λρ
γµ∂µψ

We will prove this below. Assuming it to be true for a moment, we see that the equation:

γµ∂µψ = 0

is a Lorentz-covariant equation. We can easily generalise the equation by adding a mass

term:

(iγµ∂µ −m)ψ = 0

This clearly retains Lorentz covariance, and is called the free (massive) Dirac equation. A

commonly used terminology is to represent:

γµ∂µ → ∂/

One should remember that ∂/ is not only a differential operator but also a matrix in spinor

space.

To prove the above result, note that γµ is a collection of constants, therefore under a Lorentz

transformation we have:

γµ∂µψ → γµ

(

(

e−
1

2
ωλρV

λρ)ν

µ
∂ν

)(

e
1

2
ωλρS

λρ
ψ

)

Equating this to the desired result:

e
1

2
ωλρS

λρ
γµ∂µψ

tells us that the result will be true if γµ satisfies the identity:

(

e−
1

2
ωλρV

λρ
)µ

ν

(

e−
1

2
ωλρS

λρ
)

ac

(

e
1

2
ωλρS

λρ
)

db

γν
cd = γµ

ab

Such an identity indeed holds. It is easy to check it at the level of infinitesimal transforma-

tions, for which we have:

LHS =
(

δµ
ν − 1

2
ωλρ(V

λρ)µ
ν

) (

δac − 1
2
ωλρS

λρ
ac

)

(

δdb + 1
2
ωλρS

λρ
db

)

γν
cd

= γµ
ab − 1

2
ωλρ(V

λρ)µ
νγ

ν
ab − 1

2
ωλρS

λρ
ac γ

µ
cb + 1

2
ωλρS

λρ
db γ

µ
ad

So the last three terms should add up to zero for any arbitrary ω, in other words:

(V λρ)µ
νγ

ν
ab + Sλρ

ac γ
µ
cb − Sλρ

db γ
µ
ad = 0
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This identity can be written in matrix notation as:

[γµ, Sλρ] = (V λρ)µ
νγ

ν

and this is easily verified using properties of the γ-matrices.

To understand the Dirac equation better, we act on it with (−iγν∂ν −m) and find:

(−iγν∂ν−m)(iγµ∂µ−m)ψ = (γν∂νγ
µ∂µ+m2)ψ = (1

2
{γν , γµ}∂ν∂µ+m2)ψ = (∂µ∂µ+m2)ψ = 0

Therefore if ψ satisfies the Dirac equation then each component of it also satisfies the Klein-

Gordon equation! However the reverse is not necessarily true: every solution of the Klein-

Gordon equation need not be a solution of the Dirac equation. In fact unlike the Klein-

Gordon equation, the Dirac equation relates different components of the four-component

spinor ψa to each other.

Since iγµ∂µ is complex in our chosen representation, the solutions of this equation must in

general be taken to be complex. However we will see that there is a particular representation,

the Majorana representation, in which iγµ∂µ is real and so in that representation it makes

sense to consider real solutions.

3.3 Dirac Lagrangian

We now seek a Lagrangian whose variation gives rise to the free massive Dirac equation.

A free Lagrangian must be bilinear in fermions and Lorentz invariant. It is tempting to

contract the LHS of the Dirac equation, χa = (iγµ∂µ − m)abψb with another fermion ψa.

However ψaχa is not a Lorentz scalar. It is equal to:

ψaψa →
(

e
1

2
ωλρS

λρ
)

ab

ψb

(

e
1

2
ωλρS

λρ
)

ac

ψc

The first term in brackets is the transpose of the second, so it would only cancel the second

term in brackets if we had Sλρ T = −Sλρ. Unfortunately this is not the case.

We might hope to improve things if we carry out complex conjugation of ψa. Then the first

term depends on Sλρ † but unfortunately this too is not equal to −Sλρ. In fact,

(Sλρ)† =
(

1
4
[γλ, γρ]

)†

= 1
4
[γρ† , γλ†

]

= −1
4
[γλ†

, γρ† ]

We already know that γ0† = γ0 while γi† = −γi, which implies that S† 6= −S.
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This suggests that the operation that reverses S should combine Hermitian conjugation with

something that treats γ0 differently from the other γ-matrices. This operation, called “bar”,

is defined by :

ψa → ψa ≡ ψ†
bγ

0
ba

The corresponding operation on γ-matrices is:

γµ ≡ γ0γµ†

γ0

One easily shows that γµ = γµ, from which it follows that:

Sµν ≡ γ0Sµν†

γ0 = −Sµν

It follows that for any two spinors ψ, χ, the combination

ψχ = ψaχa

is Lorentz invariant.

Thus the general rule is that we always multiply a spinor by a barred spinor from the left in

order to get a Lorentz invariant. Thus it is clear that the Dirac action should be:

L = ψ̄(iγµ∂µ −m)ψ

which is a good Lorentz scalar. Since a lot of indices are implicit, just for once we write the

above expression explicitly:

L = ψ†
aγ

0
ab (iγµ

bc∂µ −mδbc)ψc

Since ψ is complex, in finding the equations of motion we can vary ψ, ψ† independently, to

get:

δ

δψ†
⇒ γ0(iγµ∂µ −m)ψ = 0 ⇒ (iγµ∂µ −m)ψ = 0

δ

δψ
⇒ ψ̄(−iγµ←−∂µ −m) = 0

We can also exhibit the canonical momenta following from the Dirac equation:

πa =
δL
δψ̇a

= i(ψγ0)a = iψ†
a
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3.4 Weyl basis

An alternate basis of the γ-matrices gives us some useful physical information about the

nature of fermions.

γ0 = 11⊗ σ1 =

(

0 11
11 0

)

γ1 = iσ1 ⊗ σ2 =

(

0 σ1

−σ1 0

)

γ2 = iσ2 ⊗ σ2 =

(

0 σ2

−σ2 0

)

γ3 = iσ3 ⊗ σ2 =

(

0 σ3

−σ3 0

)

Again we can check explicitly, using the Pauli matrix algebra, that the above matrices form

a representation of the Clifford algebra. This is called the Weyl representation.

A key feature of the Weyl representation is that the matrix γ5 is diagonal:

γ5 = i(i)3σ1σ2σ3 ⊗ σ1σ2σ2σ2 = i11⊗ iσ3 = −11⊗ σ3 =

(

−11 0
0 11

)

In this representation we also have the following properties for the Lorentz generators Sµν :

S0i = 1
2
γ0γi = 1

2
(11⊗ σ1)(iσi ⊗ σ2) = −1

2
σi ⊗ σ3 = −1

2

(

σi 0
0 −σi

)

Similarly, when i 6= j we have:

Sij = 1
2
γiγj = 1

2
(iσi ⊗ σ2)(iσj ⊗ σ2) = −1

2
ǫijkσk ⊗ 11 = − i

2
ǫijk
(

σk 0
0 σk

)

We see that in the Weyl representation the Lorentz generators Sµν are block diagonal. There-

fore the two upper components of a spinor never mix with the two lower components. This

shows that a 4-component spinor is a reducible representation of the Lorentz algebra.

To reduce the representation we simply define:

ψ =

(

ψL

ψR

)

where each of ψL, ψR is a 2-component spinor. We see that:

γ5

(

ψL

ψR

)

=

(

−ψL

ψR

)
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The upper part ψL, corresponding to the negative eigenvalue of γ5, is called a “left-handed”

spinor, while the lower part corresponding to the positive eigenvalue of γ5 is called “right-

handed”.

Now consider the action of a Lorentz transformation on a spinor:

ψa →
(

e
1

2
ωµνS

µν)

ab
ψb

Using the form of Sµν in the Weyl representation, derived above, it is easy to show that:

1
2
ωµνS

µν = ω0iS
0i + 1

2
ωijS

ij = − ω0i

2

(

σi 0
0 −σi

)

− i
4
ǫijkωij

(

σk 0
0 σk

)

= −1

2





ω0iσ
i + i

2
ǫijkωijσ

k 0

0 −ω0iσ
i + i

2
ǫijkωijσ

k





Let θk = 1
2
ǫijkωij. These are the rotation parameters around the k-axis (k = 1, 2, 3). Similarly

ω0i = βi are the boost parameters along i = 1, 2, 3.

Recalling the definitions of the two-component spinors ψL, ψR, we find that under Lorentz

transformations:

ψL →
(

1− βi
σi

2
− iθi

σi

2

)

ψL

and

ψR →
(

1 + βi
σi

2
− iθi

σi

2

)

ψR

We learn the important fact that ψL, ψR transform the some way under rotations, but op-

positely under boosts.

In the Weyl representation, the LHS of the Dirac equation is:

(iγµ∂µ −m)ψ =

(

−m i(∂0 + σi∂i)
i(∂0 − σi∂i) −m

)(

ψL

ψR

)

So the Dirac equation becomes:

i(∂0 + σi∂i)ψR −mψL = 0

i(∂0 − σi∂i)ψL −mψR = 0

Defining:

σµ = (1, σi), σ̄µ = (1,−σi)
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the Dirac equation reduces to:

iσµ∂µψR −mψL = 0

iσ̄µ∂µψL −mψR = 0

Note that when m = 0, the two equations decouple. This is an extremely important property.

The left-handed and right-handed Weyl spinors are in fact parity conjugates of each other.

In the massless limit we see that the two types of spinors do not mix. It is therefore possible

to assign different quantum numbers (generalised charges) to left and right-handed spinors,

leading to a parity-violating theory. This is implemented in the Standard Model.

3.5 Majorana basis

One more interesting basis for the γ-matrices is:

γ0 = σ1 ⊗ σ2

γ1 = iσ1 ⊗ σ3

γ2 = iσ1 ⊗ σ1

γ3 = iσ3 ⊗ 11

Note that here, all γµ are pure imaginary. This is called the Majorana basis. The benefit of

purely imaginary γ-matrices is that the Dirac equation becomes a real equation. Therefore

we can consider real spinors if we like. Such spinors, which are real in the Majorana basis,

are called Majorana spinors.

In particle physics, real fields represent particles which are their own antiparticles. In this

sense a Majorana spinor is analogous to a real scalar field. Though no examples are known

with certainty in nature, it is thought that (some) neutrinos might be Majorana particles.

Note that in this representation,

γ5 = iγ0γ1γ2γ3 = σ2 ⊗ 11

which is also imaginary. Since we know that γ0 is Hermitian as well as pure imaginary, it

must also be antisymmetric. This is easy to check.

The existence of the Majorana basis highlights a problem with classical spinors. The mass

term in the Dirac Lagrangian is:

mψψ = mψa(γ
0)abψb
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Since γ0 is antisymmetric, this suggests that the mass term vanishes!

By the same argument one can also show that the kinetic term would be a total derivative.

Since γ0γµ is symmetric in the Majorana basis, we apparently have:

ψ∂/ψ = ψa(γ
0γµ)ab∂µψb = 1

2
∂µ

(

ψa(γ
0γµ)abψb

)

If this were correct there would be no Lagrangian for Majorana spinors at all!

However these statements are incorrect. Instead, we learn a fundamental fact: that classical

spinor fields should anticommute with each other instead of commuting:

ψaψb = −ψbψa

Then the mass term is nonzero and the kinetic term also is nontrivial.

Because the spinors classically anticommute, the quantum mechanical treatment of them

will impose canonical anticommutators rather than commutators, as we will see.

3.6 Free-particle solutions of Dirac equation

We have seen that solutions of wave equations are generically of the form e−ik·x. However

now our fields are spinors, so this factor can only be a building block and must be multiplied

by some (possibly k-dependent) spinor. Hence we take:

ψa(x) = ua(k)e
−ik·x

where k2 = m2.

This certainly solves the position-space Klein-Gordon equation. However it does not neces-

sarily solve the Dirac equation. Acting on the above by i∂µ we pull down a factor of kµ, so

the Dirac equation imposes the constraint on ua(k) that:

(γµkµ −m)u(k) = 0

We assume the mass m is nonzero (we can treat the massless case later by taking the limit

m → 0). In this case we can boost to the rest frame of the particle: kµ = (m,~0). In this

frame the Dirac equation becomes:

(mγ0 −m)u(k) = 0

or equivalently:

(1− γ0)u(k) = 0.
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To find zero eigenvectors of (1− γ0), we go to the Weyl representation where:

γ0 =

(

0 11
11 0

)

Then,

1− γ0 =

(

11 −11
−11 11

)

=









1 0 −1 0
0 1 0 −1
−1 0 1 0

0 −1 0 1









This has two zero eigenvectors:








1
0
1
0









and









0
1
0
1









Thus the most general zero eigenvector is:

a









1
0
1
0









+ b









0
1
0
1









=









a
b
a
b









=

(

χ
χ

)

where a, b ∈ CI and χ is an arbitrary two-component spinor. We see that any spinor u(k)

with equal left and right-handed components solves the Dirac equation.

We choose to normalise the solution as follows:

u(k) =
√
m

(

χ
χ

)

, χ†χ = 1

As a result, one can easily show that uu = u†γ0u = 2m.

Note that after applying Dirac equation, a spinor has only 2 independent (complex) degrees

of freedom. These will later be identified with the spin up and spin down modes of a fermionic

particle.

It is a straightforward exercise to show that if we go away from the rest frame to a frame

where kµ = (E, 0, 0, k3), the free-particle solution becomes:

u(k) =





√

σµkµ χ

√

σ̄µkµ χ





Explicitly, we have:

√

σµkµ =
√

E + k3
1− σ3

2
+
√

E − k3
1 + σ3

2
√

σ̄µkµ =
√

E + k3
1 + σ3

2
+
√

E − k3
1− σ3

2
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Taking a basis for the two-component spinor χ as:
(

1
0

)

,

(

0
1

)

we find the basis spinors:

u1(k) =





















√
E − k3

0

√
E + k3

0





















, u2(k) =





















0

√
E + k3

0

√
E − k3





















Denoting the pair u1(k), u2(k) as us, s = 1, 2 we find that us = us†γ0 are given by:

u1(k) =
(

√

E + k3 0
√

E − k3 0
)

u2(k) =
(

0
√

E − k3 0
√

E + k3

)

Therefore:

u1(k)u1(k) =

(

√

E2 − k2
3 +

√

E2 − k2
3

)

= 2m

u1(k)u2(k) = 0

which can be summarised as:

ur(k)us(k) = 2mδrs

Similarly if we look for solutions of the conjugate Dirac equation:

(γµkµ +m)v(k) = 0

of the form:

ψ(k) = v(k)eik·x

we find a basis to be:

v1(k) =





















√
E − k3

0

−
√
E + k3

0





















, v2(k) =





















0

√
E + k3

0

−
√
E − k3
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and

v1(k) =
(

−
√

E + k3 0
√

E − k3 0
)

v2(k) =
(

0 −
√

E − k3 0
√

E + k3

)

Hence we find:

vrvs = −2mδrs

The inner products between u’s and v’s vanish:

urvs = vsus = 0

We also have a pair of completeness relations:

∑

s=1,2

us
a(k)u

s
b(k) = (γµkµ +m)ab

∑

s=1,2

vs
a(k)v

s
b(k) = (γµkµ −m)ab

3.7 Quantisation of the Dirac field

Now that we have the positive and negative frequency free-particle solutions, we can expand

the spinor field ψ(x) over them as follows:

ψa(x) =

∫

d3k

(2π)3

1
√

2ω~k

2
∑

s=1

[

as
~k
us(k) e−ik·x + b†s~k

vs(k) eik·x
]

ψa(x) =

∫

d3k

(2π)3

1
√

2ω~k

2
∑

s=1

[

bs~k v
s(k) e−ik·x + a†s~k

us(k) eik·x
]

As we mentioned earlier, spinor fields are quantised via canonical anticommutation relations.

We therefore impose:

{πa(t, ~x), ψb(t, ~y)} = iδabδ
3(~x− ~y)

since πa = iψ†
a, we get

{ψ†
a(t, ~x), ψb(t, ~y)} = δabδ

3(~x− ~y)
Note that this relation does not involve derivatives of the fields, and is symmetric between ψ

and ψ†. These features arise because the Dirac equation is first-order in time. We also have:

{ψa(t, ~x), ψb(t, ~y)} = {ψ†
a(t, ~x), ψ

†
b(t, ~y)}
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The above relations imply the following anticommutator brackets for the oscillators:

{ar
~k
, a†s~k′
} = {br~k, b

†s
~k′
} = (2π)3δ3(~k − ~k′)δrs

and, with any choice of momenta and labels,

{a, a} = {b, b} = {a, b} = {a, b†} = 0.

Now just as we did for scalar fields, we define the vacuum state by:

as
~k
|0〉 = bs~k|0〉 = 0, s = 1, 2

The Hamiltonian is:

H =

∫

d3x(π†
aψ̇a − L) =

∫

d3x(−iψ̄γi∂iψ +mψ̄ψ) =

∫

d3k

(2π)3

2
∑

s=1

ω~k(a
s†
~k
as

~k
+ b†s~k

bs~k)

where we have dropped an infinite additive constant. The physical interpretation of the

oscillators is as follows. a†s~k
creates a fermion of polarisation s, momentum ~k. On the other

hand b†s~k
creates the anti-particle of this fermion, with polarisation s and momentum ~k.

We choose a Lorentz invariant norm:

〈~k, r|~k′, s〉 = 2ω~k(2π)3δ3(~k − ~k′)δrs

which means the particle state |~k, s〉 is given in terms of oscillators by
√

2ω~k a
†s
~k
|0〉. Of course

there will be a similar antiparticle state involving b†.

In a subsequent section we will show that the particles created by the spinor field have

angular momentum 1
2

in units of ~. Therefore all quarks and leptons in nature can, at least

at the free level, be described by spinor fields. We will consider interactions later on.

3.8 Dirac propagator

Because fermions are quantised via anticommutators, we must define time-ordering for them

as follows:

T (ψ(x)ψ(y)) = ψ(x)ψ(y) if x0 > y0

= −ψ(y)ψ(x) if x0 < y0

With this, we can compute

〈0|T
(

ψa(x)ψb(y)
)

|0〉
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This time we use a shortcut. Recall that for scalars,

〈0|T (φ(x)φ(y)) |0〉 = DF (x− y)

was the Feynman propagator which solves:

−(∂µ∂µ +m2)DF (x− y) = iδ4(x− y)

Thereby we can determine that

DF (x− y) =

∫

d4k

(2π)4

i

k2 −m2 + iǫ
e−ik·(x−y)

where the iǫ determines the contour.

The fermion propagator likewise should be a Green’s function for the Dirac equation, satis-

fying:

(iγµ∂µ −m)ab(SF (x− y))bc = iδacδ
4(x− y)

We have seen that acting once more with the conjugate Dirac operator gives us the Klein-

Gordon operator. Using this in the above equation we get:

(iγν∂ν +m)(iγµ∂µ −m)SF (x− y) = −(∂2 +m2)SF (x− y)

= i(iγν∂ν +m)δ4(x− y)

This can be solved by writing

(SF (x− y))ab = (iγν∂ν +m)abDF (x− y).

Using the momentum representation of DF (x− y), we have:

SF (x− y) =

∫

d4k

(2π)4

i(k/+m)

k2 −m2 + iǫ
e−ik·(x−y)

where we have used the notation k/ = γµkµ. It can be directly checked that this satisfies the

desired equation and boundary conditions for a Feynman propagator.

The momentum factor in SF is sometimes written:

i(k/+m)

k2 −m2
=

i

k/−m
but the RHS just means what is written on the LHS.

The Dirac propagator is used in Feynman diagrams whenever there is an internal fermion

line. For external lines, as we will see in a subsequent section, the propagator is to be

amputated and in its place, an external polarisation (which can be one of us, us, vs, vs) is to

be inserted instead.
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3.9 Spin of the field ψa(x)

Recall the Lorentz algebra

[Mµν ,Mλρ] = −[ηµλMνρ + ηνρMµλ − ηµρMνλ − ηνλMµρ]

We know that M0i generates boosts and M ij generates rotations. But we have not taken

account of translations. These are generated by the momentum operator P µ, which satisfies:

[P µ, P ν] = 0

[P µ, Jνλ] = ηµνP λ − ηµλP ν

The Lorentz algebra [M,M ] together with the commutators [P, P ] and [P,M ] is called the

Poincare algebra.

Now there is a theorem that representations of the Poincare algebra are classified by the

values of P 2 = PµP
µ and W 2 = WµW

µ where

Wµ = −1

2
ǫµνρσM

νρP σ

is called the Pauli-Lubanski vector.

We have P 2 = m2, while

W 2 = −m2s(s+ 1)

where s = half-integer or integer is called the spin.

In the rest frame, Pµ = (m, 0, 0, 0) and:

W0 = 0, Wi = −1
2
mǫijkM

jk

so Wi is proportional to the ordinary angular momentum that we define in nonrelativistic

quantum mechanics. In fact Wi is what we normally call Ji (apart from a factor m) and we

know that:

JiJi = j(j + 1).

Now, for spinors we have

ψ′(x′) =

(

1 +
1

2
ωµνS

µν

)

ψ(x)

or

δψ =

(

1 +
1

2
ωµνS

µν − ωµνx
µ∂ν

)

ψ
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Defining the RHS to be

(

1 +
1

2
ωµνJ

µν

)

ψ, we have

Mµν = Sµν − (xµ∂ν − xν∂ν)

which expresses the angular momentum as the sum of a spin part and an orbital part.

Thus as an operator the Pauli-Lubanski vector is:

Wµ = −1

2
ǫµνλρ

(

Sνλ − (xν∂λ − xλ∂ν)
)

i∂ρ

= − i
2
ǫµνλρS

νλ∂ρ

Note that the orbital part has dropped out, justifying the claim that Wµ measures the

intrinsic angular momentum.

Now:

WµW
µ = − i

2
ǫµνλρS

νλ∂ρ · − i
2
ǫµαβγS

αβ∂γ

= −1

4
(ηναηλβηργ + · · · )

(

1

4
[γν , γλ]

)(

1

4
[γα, γβ]

)

∂ρ∂γ

= −3

4
(iγµ∂µ)2 = −3

4
m2

The last steps above are left as an exercise.

Thus we find that s(s+ 1) = 3
4

and therefore s = 1
2
. This proves that the spinor field ψa(x)

describes a field of spin half.

3.10 Charge of a state

Just like complex scalars, spinors too have a global phase invariance:

ψ → eiαψ, ψ† → e−iαψ†

The Dirac Lagrangian is easily seen to be invariant under this transformation as long as α

is constant. The corresponding conserved current, which can be deduced using Noether’s

theorem, is:

Jµ = ψγµψ

and it is easily checked that this is conserved on using the equations of motion.
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The conserved charge is:

Q =

∫

d3x J0 =

∫

d3xψγ0ψ =

∫

d3xψ†ψ

At the quantum level the charge operator has to be defined with normal ordering so that the

expectation value of charge in the vacuum is zero. Thus after quantisation we must write:

Q =

∫

d3x :ψ†ψ :

In terms of the oscillators as
~k
, bs~k we get:

Q =

∫

d3k

(2π)3

1

2ω~k

(

a†s~k
as

~k
− b†s~k

bs~k

)

Using the anti-commutation relations for the a and b, we can now check that:

Q
(

a†s~k
|0〉
)

= a†s~k
|0〉, Q

(

b†s~k
|0〉
)

= −b†s~k
|0〉

demonstrating that a† creates particles while b† creates antiparticles.

This charge will become a physical quantity when we couple the theory to the vector field

Aµ. In that situation the physical charge depends on the value of the coupling constant e

which always multiplies Q. If e is a negative number equal to the charge of the electron,

then the charge of particles is −|e| and of antiparticles is +|e|, which is what we expect for

electrons and positrons respectively.

The free Dirac theory described here can be used to describe all charged fermions in nature:

electrons, muons, tau leptons and quarks. For the neutrinos there is a slight subtlety. It is

possible that one or more of the neutrinos is a Majorana particle, which means it would be

described by a field that is real in the Majorana representation. Such a particle would be its

own antiparticle. This question is not yet settled and remains under investigation.
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4 The S-matrix

We now have all the machinery needed to compute physical quantities in QFT. But we still

need to make a connection between the correlation functions or n-point functions

〈0|T (φ(x1)φ(x2) · · ·φ(xn))|0〉

and physically measured quantities. This is done via the S-matrix.

In this section we do not want to be very specific about which field we are referring to (scalar,

spinor or vector) because the discussion applies to all of them. However whenever specific

formulae are needed, we will work with a real scalar field with a λφ4 interaction, since it

provides the simplest example.

The S-matrix, or scattering matrix, of a QFT is given by a collection of matrix elements

between “in” states and “out” states in a scattering process. To understand these states,

recall how we defined the interacting in-vacuum:

|Ω〉 = lim
T→∞(1−iǫ)

e−iHT |0〉

and the out-vacuum:

〈Ω| = lim
T→∞(1−iǫ)

〈0|e−iHT

(both upto normalisation).

We have seen that the overlap between the two vacua is nontrivial:

〈Ω|Ω〉 = lim
T→∞(1−iǫ)

〈0|T
(

e−i
R T
−T

HI (t′)dt′
)

|0〉

The physical interpretation of the operator appearing above is that it is a unitary operator

that evolves us from the free vacuum in the far past to the free vacuum in the far future.

The S-matrix will be a similar unitary operator, but it will take us from a noninteracting

multi-particle state in the past to another one in the future.

Let us take the “in” state to be |~p1, ~p2〉in associated to two particles of 4-momenta (ω~p1
, ~p1)

and (ω~p2
, ~p2). In the interacting theory it would be hard to define this state. However in the

free theory we know that the corresponding state is:

|~p1, ~p2〉0 =
√

2ω~p1

√

2ω~p2
a†~p1
a†~p2
|0〉

Accordingly we define the state:

|~p1, ~p2〉in = lim
T→∞(1−iǫ)

e−iHT |~p1, ~p2〉0
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and likewise:

out〈~k1, · · · , ~kn| = lim
T→∞(1−iǫ)

0〈~k1, · · · , ~kn|e−iHT

Now the S-matrix is defined as the overlap, or inner product, of the “in” state with the “out”

state:

S(~k1,··· ,~kn|~p1,~p2)
= out〈~k1, · · · , ~kn|~p1, ~p2〉in

From the definition of in and out states, we can guess a formula that provides a useful

calculational technique to evaluate the S-matrix in terms of free fields in perturbation theory,

namely:

S(~k1,··· ,~kn|~p1,~p2)
= lim

T→∞(1−iǫ)
0〈~k1, · · · , ~kn|T

(

e−i
R T
−T

HI(t′)dt′
)

|~p1, ~p2〉0

It is not easy to justify the above formula very precisely as we did for the vacuum expectation

value earlier. Here we will simply assume it.

Consider the special case of 2→ 2 scattering, which means the final state has two particles

in it. Expanding the above formula, we have:

S(~k1,~k2|~p1,~p2)
= lim

T→∞(1−iǫ)
0〈~k1, ~k2|T

(

e−i
R T
−T

HI(t′)dt′
)

|~p1, ~p2〉0

= 0〈~k1, ~k2|~p1, ~p2〉0 +O(λ) (2)

where for definiteness we can imagine an interaction of the form Hint = λ
4!

∫

φ4. Now, the

first term in the last line is just:
√

2ω~k1

√

2ω~k2

√

2ω~p1

√

2ω~p2
〈0|a~k1

a~k2
a†~p1
a†~p2
|0〉

= 2ω~p1
· 2ω~p2

· (2π)6
(

δ3(~p1 − ~k1)δ
3(~p2 − ~k2) + δ3(~p1 − ~k2)δ

3(~p2 − ~k1)
)

This term simply sets the initial state equal to the final state. So it does not take into

account interactions. The corresponding Feynman diagrams are “disconnected”, not in the

sense of bubble diagrams that we saw earlier but in the sense that particles pass through the

process without interacting with each other.

We would like to define a matrix T that is the “nontrivial” part of S. For this purpose we

need to drop all terms which do not contribute to scattering. Schematically we have:

S = 1 + iT

As we go along, we will see precisely how T should be defined.

Consider now the terms of order λ:

−i λ
4!

0〈~k1, ~k2| T
(

∫

φ4(y)d4y
)

|~p1, ~p2〉0
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(here φ refers to the free field in the interaction picture, which should really be denoted φ0

but we drop the 0 hoping no confusion will arise). Notice that this time we do not have

a vacuum to vacuum amplitude so we cannot just expand the time-ordered product using

Wick’s theorem. However we can use the result, derived in a previous lecture, that:

T (φ4(y)) = :φ4(y): + 6DF (0) :φ2(y): + 3DF (0)2

Now, recalling that φ = φ+ + φ− with:

φ+(t, ~x) =

∫

d3k

(2π)3

1
√

2ω~k

a~k e
−ik·x

φ−(t, ~x) =

∫

d3k

(2π)3

1
√

2ω~k

a†~k e
ik·x

we see that φ+(x)|~p1〉 6= 0 (unlike φ+|0〉). In fact,

φ+(x)|~p1〉 =

∫

d3k

(2π)3

1
√

2ω~k

a~k e
−ik·x

√

2ω~k1
a†~p1
|0〉 = e−ip1·x|0〉

It follows that 〈~k1, ~k2|:φ4(y):|~p1, ~p2〉 6= 0. We evaluate it as follows. Notice that terms in

:φ4(y): of the form φ4
+(y) give a vanishing contribution to the matrix element:

〈~k1, ~k2|φ4
+(y)|~p1, ~p2〉 ∼ 〈0|a~k1

a~k2
(a)4 a†~p1

a†~p2
|0〉 = 0

Extending this argument to the other terms, the only term we need to keep from :φ(y)4: is

6φ2
−(y)φ2

+(y). Thus we have:

6 · − i

4!
λ

∫

d4y〈~k1, ~k2|φ2
−(y)φ2

+(y) |~p1, ~p2〉

Now it’s easy to see that:

φ+(y) |~p1, ~p2〉 = e−ip1·y|~p2〉+ e−ip2·y|~p1〉

So

φ2
+(y) |~p1, ~p2〉 = 2 e−i(p1+p2)·y|0〉

and similarly,

〈~k1, ~k2|φ2
−(y) = 2 〈0|ei(k1+k2)·y

Thus we finally get:

−iλ
∫

d4y ei(k1+k2−p1−p2)·y = −iλ(2π)4δ4(k1 + k2 − p1 − p2)
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This is clearly a contribution to 〈T 〉. Let us defineM by:

〈~k1, ~k2|iT |~p1, ~p2〉 = iM · (2π)4δ4(k1 + k2 − p1 − p2)

So this term, coming from :φ4(y):, contributes M = −λ.

Now we consider the other terms. For example, DF (0) :φ2(y): gives:

DF (0) 〈~k1, ~k2|φ−(y)φ+(y)|~p1, ~p2〉

This can be represented as 4 terms:

Since all these represent non-interacting propagation, we include these in the “1” part of

S = 11 + iT .

Finally terms with (DF (0))2 give “completely disconnected” pieces which are therefore

dropped.

Thus to order λ, we have:

M = −λ
Here we finally see the physical meaning of λ: it is just (minus) the leading contribution

to the M-matrix, which in turn contains all the physical scattering data contained in the

S-matrix.

We also see thatM differs in an important way from the four-point correlation function:

〈0|T
(

φ(x1) · · ·φ(x4)

∫

d4y φ4(y)
)

|0〉.

The latter in momentum space has four propagators and is equal to:

−λ
4
∏

i=1

1

k2
i −m2 + iǫ

(2π)4δ4(ki + · · ·+ kr)

Thus M is an “amputated” version of the four-point function, i.e. with the external legs

chopped off. This is just as well, because with external on-shell particles satisfying k2 = m2,

the propagators
1

k2 −m2 + iǫ
would have diverged!

But now we see a problem. In the next order we would find
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In this diagram, even after chopping off the external propagators, we find there is an internal

propagator (marked by the arrow) of momentum k2! This would diverge on-shell.

The solution is to understand that the true propagator is

and it is the whole thing that should be chopped off. In fact the “blob” diagram on the RHS

encodes how |~p〉0 turns into |~p〉.

Therefore the prescription to compute the T or M matrix is to keep only completely con-

nected diagrams, amputate the full (corrected) full external legs, and then place the external

particles on-shell.
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5 Quantum Electrodynamics

We are now ready to compute physical quantities using QFT. We will work with the theory

of quantum electrodynamics, namely a single charged fermion (electron) ψ(x) coupled to the

photon Aµ(x). This theory is obtained by starting with the Dirac action:

iψγµ∂µψ −mψψ

and promoting the phase invariance under ψ → eiαψ, with α constant, to a gauge invariance

where α = α(x). This requires the introduction of a vector field Aµ and the generalisation

of the derivative:

∂µ → ∂µ − ieAµ

We also add a kinetic term for Aµ. The Lagrangian density is therefore:

L = −1

4
FµνF

µν + iψγµ(∂µ − ieAµ)ψ −mψψ

We split the above Lagrangian into its free (quadratic) part and its interacting (cubic) part.

The free part is then quantised via anticommutators for the fermions. For the gauge field we

choose Lorentz gauge and then perform quantisation via the usual commutators. The next

step is to make a mode expansion for ψ as we have done in a previous section, and a mode

expansion for Aµ, in Lorentz gauge as follows:

Aµ(x) =

∫

d3k

(2π)3

1
√

2ω~k

3
∑

r=0

(

ar
~k
ǫrµ(k)e−ik·x + a†r~k

ǫr⋆
µ (k)eik·x

)

where ǫrµ(k), r = 1, 2 are the polarisation vectors, analogous to the free-particle spinors

ua(x), va(x) for spinor fields ψa(x). If the photon momentum is chosen to be (k, 0, 0, k) then

a basis for ǫrµ(k) is (0, 1, 0, 0) and (0, 0, 1, 0) (plane polarised) or (0, 1, i, 0) and (0, 1,−i, 0)

(circularly polarised). Finally the interaction eψγµAµψ is treated as a perturbation.

5.1 Feynman rules

We start by formulating the Feynman rules for this theory. The momentum-space propaga-

tors are:

ψ :
i(k/+m)

k2 −m2 + iǫ

Aµ :
−i ηµν

k2 + iǫ

We need to put polarisation factors on the external photon lines as follows:
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Similarly we need to put in external polarisation factors for spinors:

Finally, the interaction vertex of QED is just the γ-matrix:

−ieγµ

Depending on where this appears in a diagram, it can describe an electron emitting a photon,

or an electron absorbing a photon, or a positron emitting a photon, or a positron absorbing

a photon, or an electron-positron pair annihilating into a photon, or a photon dissociating

into an electron-positron pair. We see that the vertex is rather a versatile object! It must
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be noted that for kinematical reasons, none of the above six processes can actually occur as

an on-shell processes with external particles – for example, it is well-known that an electron-

positron pair cannot give rise to a single photon because energy-momentum conservation

along cannot be satisfied for this process along with the on-shell conditions for each particle.

This is not a problem, because all the particles in the interaction vertex are allowed to be

off-shell. The vertex is then used as a building block for more complicated physical processes

that do satisfy all the kinematical conditions, such as electron-positron annihilation into a

pair of photons or scattering of electrons with positrons or photons or with themselves.

To add more “matter” particles in the theory, we simply add one copy of the Dirac action

(minimally coupled to the gauge field) for each species of particle, with the mass parameter

appearing in the mass term being fixed to its experimental value for each species. Each

species will give its own interaction vertex −ieγµ coupling the photon to the particle and

antiparticle of that species.

5.2 e+e− → µ+µ−

To illustrate how QED calculations of physical quantities are carried out, consider the pro-

cess:

e+e− → µ+µ−

where the external polarisations are labelled s, s′ for e−, e+ and r, r′ for µ−, µ+.

e

e+

−µ

µ

−

+

pk

p’k’

Time is taken to flow from right to left in this diagram. Note that the momentum flow and

particle number flow (the latter is the same as negative charge flow) are in the same direction

for particles. Hence a single arrow on the line labels both. However they are in opposite

directions for antiparticles. In this case the arrow on the line indicates the particle number

flow while the separate arrow labels the momentum flow.

The corresponding S-matrix element is

S(~k,r,~k′,r′|~p,s,~p ′,s′) = 1 + (2π)4δ4(p+ p′ − k − k′) · iM
with

M = v s′(p′)(−ieγµ)us(p)
−igµν

(p+ p′)2
u r(k)(−ieγν)vr′(k′)
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where we have used the fact that the 4-momentum carried by the internal photon is (p+p′)µ.

The above process is of order e2 in the S-matrix. Note that no other diagrams contribute

at this order.

A diagram like the above where the incoming particles first annihilate into a virtual particle

and then the final state particles are produced, is called an “s-channel” diagram.

If we were doing e+e− → e+e− there would be another diagram in addition to the s-channel

one. This is:

k’p’

e

e−

e++

k p
e−

and is called a “t-channel” diagram.

On the other hand if we were doing e−e− → e−e− we would have the two diagrams:

e

e−

e

k p
e−

−−

p’k’

e

ee

e −

−−

−

pk

k’ p’

where the first one is t-channel and the second is “u-channel”. However there is no s-channel

diagram – because e−e− cannot annihilate into a photon. We see that all conservation laws

are already respected by the Feynman diagram expansion in QFT.

Returning to our original process e+e− → µ+µ−, the quantity M can be simplified to:

M =
ie2

(p+ p′)2
vs′(p′)γµus(p) ur(k)γµv

r′(k′)

Now we need to extract a physical quantity out of this. This quantity is the differential

cross-section, which can be shown to be:
(

dσ

dΩ

)

cm

=
1

2ω~p 2ω~p ′ |~v − ~v ′|
|~k|

16π2ECM
|M(k, k′; p, p′)|2
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where ~v = ~p
ω~p

and ~v ′ = ~p ′

ω~p ′
, so ~v − ~v′ is the relative velocity of the two incoming beams. A

derivation of the above formula is provided in Appendix I to this Section.

The above formula is general for any 2 → 2 scattering. Now in principle we must plug in

the value ofM for e+e− → µ+µ−, given above. But we actually need |M|2 which turns out

to be simpler! We find:

|M|2 =
e4

(p+ p′)4

(

vs′(p′)γµus(p) us(p)γνvs′(p′)
) (

ur(k)γµv
r′(k′) vr′(k′)γνu

r(k)
)

where we have used (uγµv)⋆ = (vγµu), an identity that is easily proved by going to a fixed

γ-matrix basis.

Notice that in the present process since there is only a single diagram that contributes

to leading order, |M|2 is just the square of the contribution of that diagram. However for

processes where there are many diagrams, for example when both s and t channels contribute

(or when we go to the next order in perturbation theory), M is the sum of contributions

from all the diagrams and therefore |M|2 involves both the squares of individual diagrams

and the cross-terms that arise in squaring. The latter can be thought of as “interference

terms”. One should not make the mistake of squaring each diagram separately and then

adding the result, which would miss the important cross-terms.

Returning to the present calculation, in principle r, r′, s, s′ (the last two corresponding to

incoming polarisations and the former to outgoing polarisations) are all arbitrary. However,

in experiments we often scatter unpolarised beams, so we must average over s and s′. Also

we often don’t measure the final spins, in which case we must sum over final-state spins r, r′.

In such situations we therefore need to calculate:

1
2

∑

s

1
2

∑

s′

∑

r

∑

r′

|M|2

In this situation the completeness relations, derived in a previous lecture, help us to simplify

the expression. Using:

∑

s

us(p)us(p) = p/+m

∑

s

vs(p)vs(p) = p/−m

we find that:

1

4

∑

spins

|M|2 =
e4

4(p+ p′)4
tr
[

(p/′ −me)γ
µ(p/+me)γ

ν
]

tr
[

(k/+mµ)γµ(k/
′ −mµ)γν

]
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As shown in Appendix II to this Section, this reduces to:

1

4

∑

spins

|M|2 =
8e4

(p+ p′)4

[

p · k p′ · k′ + p · k′ p′ · k +m2
µ p · p′ +m2

e k · k′ + 2m2
µm

2
e

]

We now set me → 0 since m2
e ≪ p · p′. The error will be smaller than that introduced by

neglecting higher-order terms in the perturbation series.

In the CM frame, we have:

p = (E, 0, 0, E), p′ = (E, 0, 0,−E)

with 2E = Ecm. Also, k = (E,~k) and k′ = (E,−~k), where E =
√

~k2 +m2
µ.

Now,

(p+ p′)2 = 4E2

p · p′ = 2E2

p · k = E2 − E|k| cos θ = p′ · k′

p · k′ = E2 + E|k| cos θ = p′ · k

where θ is the angle of the outgoing µ+µ− pair with respect to the incoming e+e− pair. So,

1

4
|M|2 =

8e4

16E4

[

E2(E − |k| cos θ)2 + E2(E + |k| cos θ)2 + 2m2
µE

2
]

=
e4

2E2

[

2E2 + 2|k|2 cos2 θ + 2m2
µ

]

=
e4

E2

[

E2 + cos2 θ(E2 −m2
µ) +m2

µ

]

= e4
[(

1 +
m2

µ

E2

)

+

(

1− m2
µ

E2

)

cos2 θ

]

Finally,

dσ

dΩ
=

1

4E2|~v − ~v′|
|~k|

16π2Ecm
e4
[(

1 +
m2

µ

E2

)

+

(

1− m2
µ

E2

)

cos2 θ

]

Using

|~v − ~v′| =
∣

∣

∣

∣

pz

E
− p′z
E

∣

∣

∣

∣

= 2, E =
Ecm

2

and

α =
e2

4π
, |k| = E

√

1− m2
µ

E2
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we can write down our final answer for the differential cross-section:

dσ

dΩ
=

1

2E2
cm

Ecm

2

√

1− 4m2
µ

E2
cm

1

16π2Ecm
e4
[(

1 +
4m2

µ

E2
cm

)

+

(

1− 4m2
µ

E2
cm

)

cos2 θ

]

=
α2

4E2
cm

√

1− 4m2
µ

E2
cm

[(

1 +
4m2

µ

E2
cm

)

+

(

1− 4m2
µ

E2
cm

)

cos2 θ

]

For the total cross-section, we simply integrate:

σ =

∫

dΩ
dσ

dΩ
=

∫

d(cos θ) dφ
dσ

dΩ

The differential cross-section is independent of φ and has a dependence of the form A +

B cos2 θ. Then the integral is given by:

σ = 2π

∫

d(cos θ)[A+B cos2 θ]

= 2π

(

2A+
2B

3

)

=
4π

3
(3A+B)

Inserting the value of A and B we get:

σ =
4π

3

α2

4E2
cm

√

1− 4m2
µ

E2
cm

(

4 +
8m2

µ

E2
cm

)

=
4πα2

3E2
cm

√

1− 4m2
µ

E2
cm

(

1 +
2m2

µ

E2
cm

)

In the limit Ecm ≫ mµ, we get

dσ

dΩ
→ α2

4E2
cm

(1 + cos2 θ)

σ → 4πα2

3E2
cm
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Appendix I to Section 5.2: Formula for dσ
dΩ

For this, note that in an experiment, rather than the idealised process:

~p, s; ~p ′, s′ → ~k, r; ~k′, r′

we actually start with wave packets:

|φe−, φe+〉 =

∫

d3p

(2π)3

1
√

2ω~p

d3p′

(2π)3

1
√

2ω~p′
φ(~p)φ′(~p ′)|~p, ~p ′〉

where φ(~p), φ(~p ′) are the Fourier transforms of the spatial wave-function:
∫

d3p

(2π)3
|φ(~p)|2 = 1 =

∫

d3~p ′

(2π)3
|φ′(p′)|2

More precisely, one of the wave-packets is allowed to have a transverse spread with an impact

parameter ~b. Thus we use

|φe−, φe+〉 =

∫

d3p

(2π)3

1
√

2ω~p

d3p′

(2π)3

1
√

2ω~p ′

φ(~p)φ′(~p ′)e−i~p ′·~b|~p, s; ~p ′, s′〉

For the final state, we assume the momenta k, k′ are distributed in a region with invariant

volumes
d3k

(2π)3

1

2ω~k

,
d3k′

(2π)3

1

2ω~k′

.

Then the infinitesimal cross-section dσ is defined as:

dσ =
d3k

(2π)3

1

2ω~k

d3k′

(2π)3

1

2ω~k′

∫

d2b |〈~k, r;~k′, r′|φe−, φe+〉|2

This appears to depend sensitively on φ(~p), φ′(~p′) but we will see that under suitable as-

sumptions, it does not.

Now, suppressing the spin labels r, r′, s, s′ we have:
∫

d2b |〈~k,~k′|φe−, φe+〉|2 =

∫

d2b

∫

d2p

(2π)3

φ(~p)
√

2ω~p

∫

d3p′

(2π)3

φ′(~q′)
√

2ω~p′

∫

d3q

(2π)3

φ⋆(~q)
√

2ω~q

∫

d3q′

(2π)3

φ′⋆(~q′)
√

2ω~q′

× 〈~k,~k′|~p, ~p′〉 〈~k,~k′|~q, ~q′〉⋆ ei~b·(~q′−~p′)

Now from the definition,

〈~k,~k′|~p, ~p′〉 = iM(~k,~k′; ~p, ~p′) (2π)4δ4(p+ p′ − k − k′)

〈~k,~k′|~q, ~q′〉∗ = −iM⋆(~k,~k′; ~q, ~q′) (2π)4δ4(q + q′ − k − k′)
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The
∫

d2b integral can now be done, giving (2π)2δ2(~q ′
⊥ − ~p ′

⊥).

Next we would like to evaluate the integrals
∫

d3q,
∫

d3q′, using the δ-functions:

δ2(~q ′
⊥ − ~p ′

1) δ
4(q + q′ − k − k′)

If the scattering direction is z then δ2(~q ′
⊥ − ~p ′

⊥) just sets q′x = p′x and q′y = p′y. That leaves

integrals over q′z, qx, qy, qz. But the qx and qy integrals are also easy – they set:

qx = kx + k′x − p′x = px

qy = ky + k′y − p′y = py

The integral over q′z is also easy:

∫

dq′z δ(qz + q′z − kz − k′z)

sets q′z = kz + k′z − qz.

Finally we have:

∫

dqz δ(q0 + q′0 − k0 − k′0) =

∫

dqz δ
(

√

~q2 +m2 +
√

~q ′2 +m2 − k0 − k′0
) ∣

∣

∣

q′z=kz+k′
z−qz

=
1

∣

∣

∣

qz

q0
− q′z

q′
0

∣

∣

∣

Now we also set q0+q
′
0−k0−k′0 = 0 and qz +q′z = kz+k

′
z = pz +p′z. Therefore q0+q′0 = p0+p

′
0

which implies that qz = pz, q
′
z = p′z.

Notice that:
qz
q0
− q′z
q′0

= v − v′

where the RHS is the relative velocity of the two beams in the lab frame. Thus the δ-functions

set qµ = pµ, q′µ = p′µ and we have

∫

d2b |〈~k,~k′|φe−, φe+〉|2 =

∫

d3p

(2π)3

1

2ω~p

∫

d3p′

(2π)3

1

2ω~p ′

|M(~k,~k′; ~p, ~p ′)|2
|v − v′|

× |φ(~p)|2|φ′(~p ′)|2(2π)4δ4(p+ p′ − k − k′)

At this stage there is some simplification because
1

(2π)6
from

∫

d3q,
∫

d3q′ multiplied by a

(2π)2 from
∫

d2b, times a (2π)4 from one of theM’s gives 1.
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Now if φ(~p), φ′(~p ′) are sufficiently peaked at their central values (which we also call ~p, ~p ′

respectively) then we can evaluate

∫

d3p

(2π)3
|φ(~p)|2 =

∫

d3p′

(2π)3
|φ(~p ′)|2 = 1

and take everything else outside:

∫

d2b|〈 | 〉|2 =
|M(k, k′; p, p′)|2
2ω~p · 2ω~p′|v − v′|

(2π)4δ4(p+ p′ − k − k′)

Thus the infinitesimal cross-section dσ is the above multiplied by:

d3k

(2π)3

1

2ω~k

d3k′

(2π)3

1

2ω~k′

We have chosen the z direction as the scattering direction. Therefore the answer is not

expected to be rotation- or Lorentz-invariant, except under z-boosts. This is indeed the

case:
1

ω~p ω~p ′ |v − v′| =
1

|pzω~p ′ − p′zω~p|
=

1

|pzp
′
t − ptp′z|

=
4

|p−p′+ − p+p
′
−|

with p± = pt ± pz. And this manifestly exhibits 2d Lorentz invariance.

The differential cross-section per unit solid angle is obtained by writing out the k, k′ integral

and carrying out the k′ integration:

∫

d3k

(2π)3

1

2ω~k

∫

d3k′

(2π)3

1

2ω~k′

(2π)4δ4(p+ p′ − k − k′)

If we are in the centre-of-mass frame then ~p + ~p ′ = 0. Thus
∫

d3k′ sets ~k′ = −~k and the

above expression becomes:

∫

d3k

(2π)3

1

2E

1

2E ′
2π δ(ECM − E − E ′)

where E =
√

~k2 +m2 and E ′ =
√

~k′2 +m2. Now writing d3k = d|k| |k|2 dΩ, the integral

becomes:
∫

d|~k| |~k|2dΩ
16π2

δ(ECM − E −E ′)

EE ′
=

∫ |~k|2dΩ
16π2

1

EE ′

1
(

|~k|
E

+ |~k|
E′

)

where now |~k| is no longer an integration variable but is determined by:

√

~k2 +m2 +

√

~k ′ 2 +m2 = ECM
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Thus the above expression is equal to:

∫

dΩ
|k|

16π2
· 1

E + E ′
=

∫

dΩ

16π2

|k|
Ecm

and:
(

dσ

dΩ

)

cm

=
1

2ω~p 2ω~p ′ |~v − ~v′|
|~k|

16π2Ecm
|M(k, k′; p, p′)|2

Appendix II to Section 5.2: Evaluation of a trace

In this Appendix we wish to evaluate:

1

4

∑

spins

|M|2 =
e4

4(p+ p′)4
tr
[

(p/′ −me)γ
µ(p/+me)γ

ν
]

tr
[

(k/+mµ)γµ(k/
′ −mµ)γν

]

For this we need to know the traces of several matrix products. It is easy to establish that:

tr 11 = 4

tr γµ = 0

tr γµγν = 4 ηµν

tr γµγνγλ = 0

tr γµγνγλγρ = 4(ηµνηλρ − ηµληνρ + ηµρηνλ)

From the above,

(p/′ −me)γ
µ(p/ +me)γ

ν = p′αpβ tr γαγµγβγν −m2
e tr γµγν

= 4 p′αpβ (ηαµηβν − ηαβηµν + ηανηµβ)− 4m2
eη

µν

= 4 (p′µpν + p′νpµ − pp′ηµν)− 4m2
eη

µν

= 4 (p′µpν + p′νpµ − ηµν(p · p′ +m2
e))

Similarly,

tr (k/+mµ)γµ(k/−mµ)γν = 4 (kµk
′
ν + kνk

′
µ − ηµν(k · k′ +m2

µ))
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With these results we find that:

1

4

∑

spins

|M|2 =
16 e4

4(p+ p′)4
[p′µpν + p′νpµ − ηµν(p · p′ +m2

e)][k
′
µkν + k′νkµ − ηµν(k · k′ +m2

µ)]

=
4e4

(p+ p′)4

[

2p · k p′ · k′ + 2p · k′ p′ · k − 2(p · p′ +m2
e)(k · k′)

−2(k · k′ +m2
µ)p · p′ + 4(p · p′ +m2

e)(k · k′ +m2
µ)

]

=
8e4

(p+ p′)4

[

p · k p′ · k′ + p · k′ p′ · k +m2
µ p · p′ +m2

e k · k′ + 2m2
µm

2
e

]

which is the desired formula.
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6 Radiative corrections and renormalisation

We must now understand how to deal with corrections that are higher order in e2 ∼ α. For

example, in e+e− → µ+µ− we have:

e

e+

−

µ

−

+

µ

e

e e

e− −

µ

µ

µ

µ

µ

µ

− −

−

+
++ +

+

e

e+

−

These corrections include a diagram where the photon, while propagating, emits a virtual

electron-positron pair and re-absorbs it. This is considered to be a contribution to the

“photon self-energy”. Also there are two diagrams where the cubic interaction vertex of

QED gets corrected by a virtual photon. This is called the “vertex correction”. Finally there

could have been diagrams where the electron or positron had a self-energy correction due to

a virtual photon, but these have been dropped as part of the prescription of amputating full

external legs.

The photon self-energy and vertex correction are associated to two- and three-point functions

respectively. So we can study them in isolation and then plug them back into the 4-point

function later. However, the last diagram is not of this type. It is intrinsically a correction

to a four-point function.

Let us therefore examine each one in turn. We start by studying the electron propagator

correction. To all orders in perturbation theory, one can represent it by:
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Now let us we define a “one-particle irreducible” diagram (1PI) by saying it does not fall

apart on cutting one line:

Then the entire expansion can be organised as a collection of 1PI contributions strung in a

row:

Note that since we are attaching them to each other with Feynman propagators, the 1PI

pieces themselves should be amputated. Let this amputated 1PI contribution, calculated to

any order in perturbation theory, be called −iΣ(p). Note that it is a matrix in spinor space.
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Now the full propagator can be written:

i

p/−m0
+

i

p/−m0
(−iΣ)

i

p/ −m0
+ · · ·

=
i

p/−m0

(

1 + Σ
1

p/−m0
+ Σ

1

p/−m0
Σ

1

p/−m0
+ · · ·

)

=
i

p/−m0 − Σ(p)

Here we have denoted the mass that appears in the Lagrangian by m0. We see that the full

propagator
i

p/−m0 − Σ(p)
has a pole not at p/ = m0 (since Σ(p)|p/=m0

6= 0), but at some

shifted value which we can write p/ = m.

Accordingly we define the physical mass of the electron to be the parameter m satisfying:

(p/−m0 − Σ(p))p/=m = 0

To lowest order Σ2(p) is of order e2, so to the same order, inside it we can set p/ = m ≃ m0,

thus:

p/−m0 − Σ2(p/ = m0) = 0

which tells us that to this order,

m = m0 + Σ2(p/ = m0).

Now using Feynman diagram techniques, the lowest-order contribution to Σ can be com-

puted. It involves a divergent momentum integral but if we cut off the integral at a UV scale

Λ then we get:

Σ2(p/ = m0) =
3α

4π
m0 log

Λ2

m2
0

where as usual α = e2/4π and we ignore higher-order corrections in α.

Thus there is a mass shift or renormalization so that the physical mass m (the pole in the

full propagator) is related to the “bare mass” m0 (the parameter in the Lagrangian) by:

m = m0

(

1 +
3α

4π
log

Λ2

m2
0

)

This tells us that once quantum corrections are introduced, the parameter m0 in the La-

grangian is not the physically observed mass m = 0.5110 MeV. Rather, m0 is tuned as a

function of the UV cutoff so that the physically observed mass m becomes 0.5110 MeV.

The physical picture that emerges is that parameters in the classical QFT Lagrangian do

not correspond to experimentally measured quantities! Instead, one first computes quantum
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corrections and then sets the quantum-corrected parameter (in this case, the mass) to the

experimentally measured value. The same is done with the coupling constant. The bare

constant is called e0 and the vertex correction diagram allows one to define a renormalised

constant e in terms of e0 (as well as the cutoff). The experimentally measured fine structure

constant α is not e20/4π but rather e2/4π. Besides the masses and coupling constants, fields

are also renormalised.

Notice that the relation between the bare parameters m0, e0 · · · and the renormalised ones

m, e, · · · is divergent as the cutoff goes to ∞. In the present interpretation, this simply

means that the bare parameters m0, e0, · · · are themselves infinite, while the renormalised

parameters m, e, · · · are finite. This causes no conceptual problem since by definition, bare

parameters are physically unobservable.

Once the coupling constants of a theory have been renormalised, one can compute loop

diagrams for scattering processes. For example in QED we can calculate loop corrections

to e−e+ → µ−µ+. These will initially be expressed in terms of m0, e0. The cutoff is kept

finite during the calculation. At the end, m0, e0 are eliminated in terms of the physical

(renormalised) couplings (m, e). If the resulting expression is finite in the limit that the

cutoff is taken to infinity then we obtain an unambiguous and physically meaningful answer

for a physically observable scattering cross-section (say) in terms of the physically observed

parameters of the theory. Theories satisfying this requirement for all possible processes are

said to be renormalisable.

Renormalisation can be carried out to any arbitrary order in perturbation theory (with in-

creasing difficulty). However if the theory has any interaction of dimension > 4, perturbation

theory generates more and more couplings that need to be independently renormalised, lead-

ing to a loss of predictive power. Such theories are called “non-renormalisable” and gravity

is among them. Theories which satisfy the dimensional argument for renormalisability need

not necessarily be renormalisable (the argument is necessary but not sufficient). Typically,

very hard work is required to prove renormalisability for any field theory.
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7 The Higgs mechanism

In this section we will describe a remarkable phenomenon that occurs in a rather simple

quantum field theory. We will couple a complex scalar to a vector field, as we already did

in a previous section. This is the theory that we called scalar electrodynamics.

First we re-examine the complex scalar theory by itself. Let us make a change of field

variables and write the complex scalar field as:

φ(x) =
1√
2
R(x)eiθ(x).

In these variables, the Lagrangian

∂µφ
∗∂µφ−m2φ∗φ− λ

6
(φ∗φ)2

becomes:

L =
1

2
∂µR∂

µR− 1

2
m2R2 − λ

4!
R4 +

1

2
R2 ∂µθ ∂

µθ

In the new variables, the phase transformation φ→ eiαφ that we studied earlier becomes:

θ(x)→ θ(x) + α

The variables we have introduced do not seem particularly convenient and in fact they

make it rather tricky to quantise the theory. For example the kinetic term for the field θ

is multiplied by the field R2 so it vanishes at R = 0 (where polar coordinates are always

singular). However these variables have some amusing features. θ is an angle-valued field

variable and the global symmetry transformation is therefore a constant shift around a circle.

There is no mass term for θ and indeed no potential at all – such terms would break the

shift symmetry. Meanwhile the θ-independent part of the action is just that of a real scalar

field R(x).

If there were some way to “stabilise” the classical value of R at a finite value, then the θ

kinetic term would indeed take a conventional form when R was expanded about that value.

This would make θ a true massless field.

Such a stabilisation is easy to arrange. We choose a potential such that the field R gets a

minimum at a finite value. Replace m2 in the Lagrangian by −m2. The theory then becomes:

L =
1

2
∂µR∂

µR +
1

2
m2R2 − λ

4!
R4 +

1

2
R2(∂µθ)

2

The potential term is now:

V (R) =
λ

4!
R4 − 1

2
m2R2

which has a “well” shape (recall that R(x) is always positive, as it is a radial variable):
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It is strange to consider a field with a negative value of m2 (imaginary mass!). However this

merely tells us we have a bad choice of variables. The potential has a local maximum at

R = 0, and a minimum at:

dV

dR
= 0 ⇒ λ

6
R3 −m2R = 0

⇒ R =

√

6m2

λ

If we study the theory around the local maximum, the negative m2 simply indicates the

instability of the field to “roll down” to the minimum.

Therefore we are motivated to define a new field:

R̃ = R−
√

6m2

λ

The field R̃ takes its minimum at 0 and therefore this shifted field should have decent prop-

erties including a normal positive value of (mass)2. Performing this shift in the Lagrangian,

we find after a short calculation:

L =
1

2
∂µR̃ ∂

µR̃−m2R̃2 − m

2

√

3λ

2
R̃3 − λ

4!
R̃4

+
3m2

λ
(∂µθ)

2 +

√

6m2

λ
R̃(∂µθ)

2 +
1

2
R̃2 (∂µθ)

2

Notice now that R̃ has a sensible mass
√

2m, and also that θ has a sensible kinetic term.

Therefore θ is now a physical field and it is truly massless – as we saw earlier, it has no

potential energy at all!

In this theory, a continuous symmetry was “spontaneously broken”. In the original variables

the symmetry was the phase rotation φ → eiαφ and because the potential was minimised

by nonzero φ, we had to give the field a definite nonzero value in the vacuum e.g. R =
√

6m2

λ
, θ = 0. Thus the vacuum configuration, whichever one we choose, is not invariant

under the symmetry. In the radial variables the corresponding fact is that θ = constant is a

vacuum configuration for any constant.
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At the end, the theory has one real massive scalar and one “axionic” scalar with vanishing

potential. The latter is an illustration of Goldstone’s theorem, which says that sponta-

neous breaking of a continuous symmetry leads to an axionic scalar. In the (R, θ) variables

Goldstone’s theorem becomes almost obvious.

Now let us promote α to a local parameter α(x). As we have seen, the Lagrangian will not be

invariant under such a phase transformation. In the new variables the θ-independent terms

are all invariant under the local transformation (since it does not affect R) but the last term
1
2
R2∂µθ∂

µθ changes to:
1

2
R2 ∂µ(θ + α) ∂µ(θ + α)

We know that coupling a vector field Aµ(x) to a complex scalar field can preserve local gauge

invariance. In the new variables we achieve this by making the replacement ∂µθ → (∂µθ−Aµ)

in the Lagrangian, which becomes:

L =
1

2
∂µR∂

µR− 1

2
m2R2 − λ

4!
R4 +

1

2
R2(∂µθ −Aµ)2

Now if we perform the transformation θ → θ + α(x) together with Aµ → Aµ + ∂µα, it is

manifest that this action is invariant. Then, to the above Lagrangian we add:

LA = −1

4
FµνF

µν

and we end up with a coupled theory that is gauge invariant. In fact it is just scalar

electrodynamics in new variables.

Now we again consider the negative m2 type of potential that stabilises R at a finite value.

With a gauge field coupled in the system, something rather different happens compared to

what we saw above. The key difference arises from the θ-dependent term, which in R, θ

variables is now:
1

2
R2(∂µθ − Aµ)2

Once we take account of the nontrivial minimum away from R = 0 and expand the field

about it, this term becomes:

1

2

(

R̃ +

√

6m2

λ

)2

(∂µθ −Aµ)2

from which we can extract the quadratic term:

3m2

λ
(∂µθ −Aµ)2
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This term is not a “good” quadratic term as it stands, since it has a cross term between Aµ

and ∂µθ. This motivates us to perform a field redefinition:

Aµ → Aµ + ∂µθ

The effect of this is that the field θ disappears completely from the theory and the term

becomes:
3m2

λ
AµA

µ

which is a mass term for Aµ. Meanwhile in the vector field kinetic term −1
4
FµνF

µν the field

redefinition just looks like a gauge transformation and therefore that term remains invariant.

Recall that a mass term for a gauge field was prohibited by gauge invariance. However

here we have managed to introduce such a term in a gauge invariant theory! In fact the

theory above has a real massive scalar R̃ of mass
√

2m and a massive gauge field of mass

µ =

√

3m2

λ
.

This process is called the Higgs mechanism, and R̃ is the Higgs field. We learn that when

we try to implement spontaneous symmetry breaking in the presence of a gauge symmetry,

Goldstone’s theorem does not apply but instead the Higgs mechanism takes place. The

would-be Goldstone boson disappears from the theory and the gauge field acquires a mass.
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8 Non-abelian gauge theories

8.1 Non-abelian gauge invariance

Symmetries play an important role in quantum field theory, to which we have not been able

to do full justice in this short course. What we have seen is the simplest class of continuous

symmetries, which act as phase transformations on scalar and fermion fields. We also saw

that these transformations can be given an arbitrary space-time dependence and thereby

converted3 from constant (“global”) to space-time dependent (“local”).

We now extend the phase transformations to transformations that act as a matrix on multi-

component fields. Then we will consider the local version of such transformations.

Start with a set of complex scalar fields φI where I = 1, 2, · · ·N . The natural generalisation

of a phase transformation on a single field would be a unitary transformation on this set of

fields:

φI(x)→ UIJφJ(x)

Here UIJ is a constant matrix that satisfies U
†
U = 11. Clearly the Lagrangian:

∂µφ
∗
I∂

µφI −m2φIφI − V (φIφI)

is invariant under the above transformations, where we have taken the potential to be an

arbitrary function of φIφI .

Choosing the unitary matrix to be:

U =





eiα1

eiα2

eiα3





we see that an independent phase rotation on each φI is included in the possible unitary

matrices. However there are many more transformations included in U , and the non-diagonal

ones mix the different components of φI . It is easy to show that a unitary N × N matrix

has N2 independent components. There are ways of parametrising the matrix in terms of

these N2 variables but we will not need this explicitly for the moment.

Let us now consider promoting the unitary symmetry to a local one, which means letting U

be an arbitrary function U(x). The Lagrangian above fails to be invariant because:

∂µφ
†∂µφ→ ∂µ

(

φ†
U

−1
)

∂µ (Uφ)

3If we consider a completely general local transformation α(x) then it can be decomposed into a part that
is constant everywhere and another part that is space-time dependent but falls off at ∞. In this sense α(x)
contains distinct global and local parts. Therefore it is not accurate to say that “local” is a generalisation

of “global”, though it is often said nonetheless.
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where now we have suppressed the index I on the scalar field, as well as the corresponding

indices of U . Expanding out the right side, we get:

(

∂µφ
†
U

−1 + φ† ∂µU
−1
)

(∂µ
U φ+ U ∂µφ) = ∂µφ

†∂µφ+ ∂µφ
† (U−1∂µ

U)φ+ φ†(∂µU
−1

U )∂µφ

+ φ†(∂µU
−1∂µ

U)φ

This time the “unwanted” terms are matrices made out of the UIJ and sandwiched between

φ†
I and φJ . It is reasonable to guess that they could be cancelled by introducing a matrix-

valued vector field Aµ IJ and generalising the derivative to:

∂µφI → (Dµφ)I ≡ (∂µδIJ − ieAµ IJ)φJ

which we henceforth write in more implicit notation as

∂µφ→ Dµ φ ≡ (∂µ − ieAµ)φ

Now we would like to arrange that under φ→ U(x)φ we get:

Dµφ→ U(x)Dµφ

so that the generalised kinetic term Dµφ
†Dµφ remains invariant. This will be so if Aµ

transforms to A
′
µ in such a way that:

(∂µ − ieA′
µ) Uφ = U (∂µ − ieAµ)φ

Expanding both sides we have:

∂µU φ+ U ∂µφ− ieA′
µ Uφ = U ∂µφ− ieUAµ φ

Since this must be true for every φ, we have:

A
′
µ U = UAµ − i∂µU

or

A
′
µ = UAµ U

−1 − i

e
∂µU U

−1

This is the required generalised gauge-transformation law for the matrix-valued vector field.

As a check, we may specialise to the case of a single-component scalar, whereupon U becomes

the “1× 1 unitary matrix” eiα and Aµ reduces to a single vector field satisfying:

A′
µ = Aµ +

1

e
∂µα

This is the familiar Abelian gauge transformation that appears in electrodynamics.
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To understand the general case better, note that any unitary matrix can be written as:

U = eiΛ

where Λ is a Hermitian matrix4. We can derive the formula for an infinitesimal gauge

transformation by assuming the matrix Λ has small entries and dropping terms of second-

order and higher. The result is:

δAµ =
1

e
∂µΛ + i[Λ,Aµ]

We see that the commutator of the vector field and the gauge parameter enters into the

transformation law.

Finally we need to consider adding a kinetic term that will make the matrix Aµ into a

propagating field, analogous to −1
4
FµνF

µν for the abelian case. To find this one may use

trial and error. However a more reliable method is to notice that in the Abelian case we

have the following identity:

DµDνφ−DνDµφ = [Dµ, Dν ]φ = [∂µ − ieAµ, ∂ν − ieAν ]φ = −ieFµν φ

We learn the fact (which has a deep mathematical significance) that the field strength Fµν

arises as the commutator of two covariant derivatives. Notice that in this case the gauge

invariance of Fµν is guaranteed by the fact that:

D′
µφ

′ = eiαDµ φ

where φ′ = eiαφ. The above relation implies:

[D′
µ, D

′
ν ]φ

′ = eiα[Dµ, Dν ]φ

The LHS can be evaluated to give −ieF ′
µν e

iαφ while the RHS gives −ie eiαFµνφ. It follows

that F ′
µν = Fµν .

Returning to the general case, the commutator of two covariant derivatives can be evaluated

and gives:

[Dµ,Dν ]φ = −ieF µν φ

where now F µν is a matrix acting on the column vector φ, and is given by:

F µν = ∂µAν − ∂νAµ − ie[Aµ,Aν ]

Repeating the above steps we find that the transform of this F under matrix gauge trans-

formations satisfies:

UF
′
µν = F µν U

4There should be no confusion with our previous use of the symbol Λ for Lorentz transformations.
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from which we see that:

F
′
µν = U

−1
F µν U

It follows that the Lagrangian −1
4
tr F µνF

µν is gauge invariant5.

To summarise, we have found a “non-Abelian” analogue of scalar electrodynamics by starting

out with the assumption that the scalars φ form a column vector and promoting the unitary

global symmetry to a gauge symmetry. The resulting Lagrangian is:

(Dµφ
†)I(Dµφ)I − V (φ†φ)− 1

4
tr F µνF

µν

The last term in this Lagrangian is called the “Yang-Mills Lagrangian”. It is a beautiful

mathematical generalisation of the Maxwell Lagrangian and we see that it is required by local

unitary gauge invariance6. Expanding it out, we see a key difference between the Yang-Mills

and Maxwell Lagrangians:

−1

4
trF µνF

µν = −1

4
tr (∂µAν − ∂νAµ)2 +

ie

2
(∂µAν − ∂νAµ)[Aµ,Aν ] + 1

4
e2[Aµ,Aν ][Aµ,Aν ]

We see that the single term −1
4
F µνF

µν dictated by gauge invariance contains both free

terms and interactions. Moreover the interactions are very precisely dictated: a 3-point and

a 4-point interaction with related coefficients.

This means we can drop the scalar fields altogether and just study the “pure” Yang-Mills

theory, since it is an interacting field theory all on its own. Or we can add fermions.

8.2 Quantum chromodynamics

Today it is believed that the strong interactions are described by a non-Abelian gauge theory

very close to the one described above. First of all, instead of scalars we have a triplet of

fermions ψI , I = 1, 2, 3 that are supposed to describe the 3 “colours” associated to each

quark. Because there are six types (flavours) of quarks (u, d, c, s, t, b) we should introduce

six such triplets, but for a conceptual understanding of the key features we can restrict

ourselves to a single flavour of quark.

Because there are three colours of quark, we might expect a unitary gauge invariance based

on the group U(3), however the gauge invariance of this theory is actually based on SU(3).

In general the group SU(N) is the subgroup of U(N) built from unitary matrices with

5In general we need to be careful about the normalisation of the trace, here we simply assume it is
normalised to unity.

6Unitary transformations are not essential: one can derive a Yang-Mills theory with gauge invariance
based on any non-Abelian Lie group.

95



determinant 1. It can be parametrised as the exponential of a Hermitian traceless matrix,

where the tracelessness reduces from N2 to N2 − 1 generators. Thus this theory, called

“quantum chromodynamics” or QCD, has 8 gauge bosons, called “gluons”.

The Lagrangian of QCD with a single flavour is:

iψ(∂µ − ieAµ)ψ −mψψ − 1

4
trF µνF

µν

where we must be careful to keep in mind that colour indices have been suppressed in the

fermionic terms. Making them explicit we have:

iψI(∂µδIJ − ieAµ IJ)ψJ −mψIψI , I, J = 1, 2, 3

Unlike QED with deals with electrons and photons, QCD deals with quarks and gluons which

have never been observed as free particles. This posed a puzzle for a long time. Quarks were

experimentally observed via “hard” scattering off nucleons, but could not be liberated, while

gluons were proposed essentially just for the sake of having non-Abelian gauge symmetry.

Today we understand the resolution to the puzzle of why they cannot be liberated.

The effective strength of a force is given by the renormalised rather than bare value of

the corresponding coupling constant. In QCD the relevant coupling constant is the strong

interaction coupling constant, denoted gs rather than e as we have done above. Now unlike

the bare coupling, the renormalised coupling involves subtraction of the cutoff-dependent

piece at some energy scale. This effectively imposes an energy-dependence on the coupling

constant which is then thought of as gs(µ) where µ is the typical energy scale at which

renormalisation is performed.

Now as we work at higher and higher energies E, the strength of the interaction is defined by

gs(µ ∼ E). In pure non-Abelian gauge theory as well as in the same theory after coupling

to a small number of quarks, it has been shown that

gs(E) ∼ 1

logE

Therefore the strong interactions become weaker at high energies. In fact one needs to work

at sufficiently high energy to be able to use perturbation theory to study QCD.

The converse of this statement, which is on a less rigorous footing, is that at lower and lower

energies, corresponding to long distances, the coupling constant gs becomes large. Hence if a

quark or gluon tries to escape from a nucleon then the force pulling it back is effectively very

large. This is believed to lead to the phenomenon of “permanent confinement” according to

which the coloured quarks and gluons never appear as external physical states in the theory.
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Instead, only “colour singlets”, bound states of quarks and gluons into colour-neutral objects,

are seen.

Studying QCD at low energies, in particular proving the confinement hypothesis, cannot be

done in perturbation theory. Therefore one has to use methods like lattice gauge theory or

string theory.

8.3 Electro-weak interactions

We do not have time to discuss the electro-weak interactions in any detail here. So we will

limit ourselves to the fact that they are described by a non-Abelian gauge theory with gauge

group SU(2)× U(1), i.e. a non-Abelian and an Abelian factor, coupled to all the fermions

in specific ways as well as to a scalar field that forms an SU(2) doublet.

There are therefore four gauge bosons in the theory. Introducing a negative (mass)2 in the

scalar potential, we find at the end that the Higgs mechanism renders three of the gauge

bosons massive. The remaining massless one is identified with the photon. The massive

ones are named W±, Z and are the mediators of the weak interactions. This accounts for the

experimentally observed fact that the weak interactions are short-ranged. In fact this theory,

called the Glashow-Salam-Weinberg theory, can be well treated in perturbation theory and

is spectacularly successful. Moreover in some way it “unifies” the weak and electromagnetic

interactions.
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