

Ab initio determination of light hadron masses

Ch. Hoelbling

with S. Durr Z. Fodor J. Frison S. Katz S. Krieg T. Kurth L. Lellouch Th. Lippert K. Szabo G. Vulvert

The Budapest-Marseille-Wuppertal collaboration

(Science 322 (2008) 1224)

TIFR Mumbai, Feb. 10 2010

motivation	calculation	analysis	systematics	result
Outline				

motivation	calculation	analysis	systematics	result
QCD				

 Asymptotic freedom: good agreement between theory and experiment

- Good evidence that QCD describes the strong interaction in the non-perturbative domain (e.g. CP-PACS '07, $N_f=2+1$, 210MeV $\leq M_{\pi} \leq$ 730MeV, $a \simeq 0.087$ fm, $L \lesssim 2.8$ fm, $M_{\pi}L \simeq 2.9$)
- However, systematic errors not yet under control

WHY THE LIGHT HADRON SPECTRUM?

- Goal:
 - Firmly establish (or invalidate?) QCD as the theory of strong interaction in the low energy region
- Method:
 - Post-diction of light hadron spectrum
 - Octet baryons
 - Decuplet baryons
 - Vector mesons
- Challenge:
 - Minimize and control all systematics
 - 2+1 dynamical fermion flavors
 - Physical quark masses
 - Continuum
 - Infinite volume (treatment of resonant states)

DYNAMICAL FERMIONS

Goal:

• Find a computationally cheap, conceptually clean action

Method:

(Capitani, Durr, C.H., 2006) (Dürr et al (BMW Coll.) 2009)

- Separation of scales in HMC evolution: multiple timescale mass preconditioned RHMC with Omelyan integrator
- Effective supression of irrelevant UV modes: 6-step stout smearing with conservative parameter $\rho = 0.11$
- Action improvement: Tree level $\mathcal{O}(a)$ improved Wilson fermion action, tree level $\mathcal{O}(a^2)$ improved gauge action
 - Why not go beyond tree level?
 - Keeping it simple (parameter fine tuning)
 - No real improvement, UV mode suppression took care of this
 - This is a crucial advantage of our approach

motivation	calculation	analysis	systematics	result
LOCALITY	PROPER	TIES		

- locality in position space: |D(x, y)| < const e^{-λ|x-y|} with λ=O(a⁻¹) for all couplings. Our case: D(x, y)=0 as soon as |x-y|>1 (despite 6 smearings).
- locality of gauge field coupling: $|\delta D(x, y)/\delta A(z)| < \text{const } e^{-\lambda |(x+y)/2-z|}$ with $\lambda = O(a^{-1})$ for all couplings.

GAUGE FIELD COUPLING LOCALITY

analysis

SCALING OF OUR ACTION

(Dürr et al (BMW Coll.) 2009)

 \Rightarrow scaling study: $N_{\rm f}=3$ w/ action described above, 5 lattice spacings, $M_{\pi}L>4$ fixed and

$$M_{\pi}/M_{
ho} = \sqrt{2(M_{K}^{
hoh})^2 - (M_{\pi}^{
hoh})^2/M_{\phi}^{
hoh}} \sim 0.67$$

Excellent scaling up to $a \sim 0.2 \text{fm}$

FERMIONIC FORCE HISTORY

INVERSE ITERATION COUNT DISTRIBUTION

analysis

λ_{\min}^{-1} DISTRIBUTION

SIMULATION POINTS

eta	am _{ud}	M_{π} [GeV]	ams	$L^3 imes T$	# traj.
	-0.0960	.55	-0.057	$16^{3} \times 32$	10000
	-0.1100	.45	-0.057	$16^3, 32^3 imes 32$	1450,1800
3.3	-0.1200	.36	-0.057	$16^3 imes 64$	4500
	-0.1233	.32	-0.057	$16^3, 24^3, 32^3 imes 64$	5000,2000,1300
	-0.1265	.26	-0.057	$24^3 imes 64$	2100
	-0.0318	.46,.48	0.0, -0.01	$24^3 imes 64$	3300
	-0.0380	.39,.40	0.0, -0.01	$24^3 imes 64$	2900
3 57	-0.0440	.31,.32	0.0, -0.007	$32^3 imes 64$	3000
0.07	-0.0483	.19,.21	0.0, -0.007	$48^3 imes 64$	1500
	-0.007	.58	0.0	$32^3 imes 96$	1100
	-0.013	.50	0.0	$32^3 imes 96$	1450
3.7	-0.020	.40	0.0	$32^3 imes 96$	2050
	-0.022	.36	0.0	$32^3 imes 96$	1350
	-0.025	.29	0.0	$40^3 imes 96$	1450

NUCLEON AUTOCORR. ($M_{\pi} = 550$ MeV, $\beta = 3.3$)

PION AUTOCORR. ($M_{\pi} = 190 \text{ MeV}, \beta = 3.57$)

analysis

Simulation at physical quark masses

With this action, we can reach the physical point

And it shows perfect stron scaling on a BlueGene P

EFFECTIVE MASSES AND CORRELATED FITS

Goal:

Unambiguous, precise scale setting

Method:

- We set the scale via a baryon mass
- Desirable properties:
 - experimentally well known
 - small lattice error (Octet better than Decuplet)
 - independent of light guark mass → large strange content
- Best candidates:
 - Ξ: largest strange content of the octet
 - Ω: member of the decuplet, but no light guarks

QUARK MASS DEPENDENCE

Goal:

• Extra-/Interpolate M_X (baryon/vector meson mass) to physical point (M_{π} , M_K)

Method:

- Fundamental parameters: g, m_{ud}, m_s
 - Experimentally inaccessible (confinement!)
 - Must be set via 3 experimentally accessible quantities
- Use M_{Ξ} or M_{Ω} and M_{π} , M_K to set parameters
- Variables to parametrize M_{π}^2 and M_K^2 dependence of M_X :
 - Use bare masses aM_y , $y \in \{X, \pi, K\}$ and a (bootstrapped)
 - Use dimensionless ratios $r_y := \frac{M_y}{M_{\Xi/\Omega}}$ (cancellations)

We use both procedures → systematic error

QUARK MASS DEPENDENCE (ctd.)

Method (ctd.):

• Parametrization: $M_X = M_X^{(0)} + \alpha M_\pi^2 + \beta M_K^2$ + higher orders

- Leading order sufficinet for M_K^2 dependence
- We include higher order term in M_{π}^2
 - Next order χ PT (around $M_{\pi}^2 = 0$): $\propto M_{\pi}^3$
 - Taylor expansion (around $M_{\pi}^2 \neq 0$): $\propto M_{\pi}^4$

Both procedures fine → systematic error No sensitivity to any order beyond these

- Vector mesons: higher orders not significant
- Baryons: higher orders significant
 - Restrict fit range to further estimate systematics:
 - full range, $M_{\pi} < 550/450 \text{MeV}$

We use all 3 ranges → systematic error

motivation	calculation	analysis	systematics	result
CHIRAL	FIT			

CHIRAL FIT USING RATIOS

CONTINUUM EXTRAPOLATION

Goal:

- Eliminate discretization effects
- Method:
 - Formally in our action: $O(\alpha_s a)$ and $O(a^2)$
 - Discretization effects are tiny
 - Not possible to distinguish between O(a) and $O(a^2)$
 - →include both in systematic error

FINITE VOLUME EFFECTS FROM VIRTUAL PIONS

Goal:

• Eliminate virtual pion finite V effects

Method:

- Best practice: use large V
 - We use $M_{\pi}L \gtrsim 4$ (and one point to study finite *V*)

• Effects are tiny and well described by $\frac{M_X(L) - M_X}{M_X} = c M_\pi^{1/2} L^{-3/2} e^{-M_\pi L} \quad \text{(Colangelo et. al., 2005)}$

FINITE VOLUME EFFECTS IN RESONANCES

Goal:

• Eliminate spectrum distortions from resonances mixing with scattering states

Method:

- Stay in region where resonance is ground state
 - Otherwise no sensitivity to resonance mass in ground state
- Systematic treatment (Lüscher, 1985-1991)
 - Conceptually satisfactory basis to study resonances
 - Coupling as parameter (related to width)
- Fit for coupling (assumed constant, related to width)
 - No sensitivity on width (compatible within large error)
 - Small but dominant FV correction for light resonances

SYSTEMATIC UNCERTAINTIES

Goal:

Accurately estimate total systematic error

Method:

- We account for all the above mentioned effects
- When there are a number of sensible ways to proceed, we take them: Complete analysis for each of
 - 18 fit range combinations
 - ratio/nonratio fits (r_X resp. M_X)
 - O(a) and O(a²) discretization terms
 - NLO χ PT M_{π}^3 and Taylor M_{π}^4 chiral fit
 - 3 χ fit ranges for baryons: $M_{\pi} < 650/550/450$ MeV

resulting in 432 (144) predictions for each baryon (vector meson) mass with each 2000 bootstrap samples for each Ξ and Ω scale setting

SYSTEMATIC UNCERTAINTIES II

Method (ctd.):

- Weigh each of the 432 (144) central values by fit quality Q
 - Median of this distribution → final result
 - Central 68% → systematic error

• Statistical error from bootstrap of the medians

THE LIGHT HADRON SPECTRUM

Mass predictions in GeV

	Exp.	Ξ scale	Ω scale
ρ	0.775	0.775(29)(13)	0.778(30)(33)
<i>K</i> *	0.894	0.906(14)(4)	0.907(15)(8)
Ν	0.939	0.936(25)(22)	0.953(29)(19)
٨	1.116	1.114(15)(5)	1.103(23)(10)
Σ	1.191	1.169(18)(15)	1.157(25)(15)
Ξ	1.318		1.317(16)(13)
Δ	1.232	1.248(97)(61)	1.234(82)(81)
Σ*	1.385	1.427(46)(35)	1.404(38)(27)
Ξ^*	1.533	1.565(26)(15)	1.561(15)(15)
Ω	1.672	1.676(20)(15)	

BACKUP SLIDES

THE END

TUNING THE STRANGE QUARK MASS

Note: this is a rough papameter tuning; we will properly interpolate to the physical strange quark mass point later!

motivation	calculation	analysis	systematics	result
SOURCES				

• Gaussian sources *r* = 0.32 fm

- Coulomb gauge
- Gauss-Gauss less contaminated by excited states