Hadron Spectrum from Lattice Calculations

David Richards (Jefferson Laboratory) Hadron Spectrum Collaboration
Strong 2010, Mumbai, 10-12 February, 2010

- Introduction
- Baryon excitation spectrum in quenched and full QCD
- Lattices for spectrum calculations
- Identifying the continuum quantum numbers: meson spectrum
- Electromagnetic properties of excited states
- Conclusions

Resonance Spectrum of QCD

- Why is it important?
- What are the key degrees of freedom describing the bound states?
- What is the role of the gluon in the spectrum search for exotics?
- What is the origin of confinement, describing 99\% of observed matter?
- If QCD is correct and we understand it, expt. data must confront ab initio calculations
- NSAC Performance Measures
- "Complete the combined analysis of available data on single π, η, and K photo-production of nucleon resonances..." (HP3:2009)
- "Measure the electromagnetic excitations of low-lying baryon states ($<2 \mathrm{GeV}$) and their transition form factors..." (HP12)
- "First results on the search for exotic mesons using photon beams will be completed" (HP15)

Spectroscopy - I

- Nucleon Spectroscopy: Quark model masses and amplitudes states classified by isospin, parity and spin.

- Are states Missing, because our pictures are not expressed
Capstick and Roberts,
PRD58 (1998) 074011 in correct degrees of freedom?
- Do they just not couple to probes?

Exotics - I

- Exotic Mesons are those whose values of JPC are in accessible to quark model
- Multi-quark states: $\quad q \bar{q} q \bar{q}$
- Hybrids with excitations of the flux-tube
- Study of hybrids: revealing gluonic and flux-tube degrees of freedom of QCD.

Lattice QCD: Hybrids and GlueX - I

- GlueX aims to photoproduce hybrid mesons in Hall D at JLab.
- Lattice QCD has a crucial role in both predicting the spectrum and in computing the production rates
$\pi 1$ (1600) in pion production at BNL

Low-lying Hadron Spectrum

$$
\begin{aligned}
C(t)=\sum_{\vec{x}}\langle 0| N(\vec{x}, t) \bar{N}(0)|0\rangle & =\sum_{n, \vec{x}}\langle 0| e^{i p \cdot x} N(0) e^{-i p \cdot x}|n\rangle\langle n| \bar{N}(0)|0\rangle \\
& =|\langle n| N(0)| 0\rangle\left.\right|^{2} e^{-E_{n} t}=\sum_{n} A_{n} e^{-E_{n} t}
\end{aligned}
$$

Durr et al., BMW Collaboration

Science 2008
Control over:

- Quark-mass dependence
- Continuum extrapolation
- finite-volume effects (pions, resonances)

Variational Method

- Extracting excited-state energies described in C. Michael, NPB 259, 58 (1985) and Luscher and Wolff, NPB 339, 222 (1990)
- Can be viewed as exploiting the variational method
- Given $\mathbf{N} \times \mathbf{N}$ correlator matrix $C_{\alpha \beta}=\langle 0| \mathcal{O}_{\alpha}(t) \mathcal{O}_{\beta}(0)|0\rangle$, one defines the \mathbf{N} principal correlators $\lambda_{i}\left(\mathrm{t}, \mathrm{t}_{0}\right)$ as the eigenvalues of

$$
C^{-1 / 2}\left(t_{0}\right) C(t) C^{-1 / 2}\left(t_{0}\right)
$$

- Principal effective masses defined from correlators plateau to lowest-lying energies

$$
\lambda_{i}\left(t, t_{0}\right) \rightarrow e^{-E_{i}\left(t-t_{0}\right)}\left(1+O\left(e^{-\Delta E\left(t-t_{0}\right)}\right)\right)
$$

Eigenvectors, with metric $C\left(\mathrm{t}_{0}\right)$, are orthonormal and project onto the respective states

Variational Method - II

- Spectrum on lattice looks different - states at rest classified by isospin, parity and representation under cubic group

Illustration	Name	Explicit form $(\|i\| \neq\|j\| \neq\|k\|)$
(6)	single-site	$\phi_{A B C}^{F} \varepsilon_{a b c} \tilde{\psi}_{A a \alpha} \tilde{\psi}_{B b \beta} \tilde{\psi}_{C c \gamma}$
(-	singly-displaced	$\phi_{A B C}^{F} \varepsilon_{a b c} \tilde{\psi}_{A a \alpha} \tilde{\psi}_{B b \beta}\left(\tilde{D}_{j}^{(p)} \tilde{\psi}\right)_{C o r}$
\bullet -	doubly-displaced-I	$\phi_{A B C}^{F} \varepsilon_{a b c} \tilde{\psi}_{A a \alpha}\left(\tilde{D}_{-j}^{(p)} \tilde{\psi}\right)_{B b \beta}\left(\tilde{D}_{j}^{(p)} \tilde{\psi}\right)_{C o \gamma}$
	doubly-displaced-L	$\phi_{A B C}^{F} \varepsilon_{a b c} \tilde{\psi}_{A a \alpha}\left(\tilde{D}_{j}^{(p)} \tilde{\psi}\right)_{B b \beta}\left(\tilde{D}_{k}^{(p)} \tilde{\psi}\right)_{C o \gamma}$
	triply-displaced-T	$\phi_{A B C}^{F} \varepsilon_{a b c}\left(\tilde{D}_{-j}^{(p)} \tilde{\psi}\right)_{A a \alpha}\left(\tilde{D}_{j}^{(p)} \tilde{\psi}\right)_{B b \beta}\left(\tilde{D}_{k}^{(p)} \tilde{\psi}\right)_{C c \gamma}$
	triply-displaced-O	$\phi_{A B C}^{F} \varepsilon_{a b c}\left(\tilde{D}_{i}^{(p)} \tilde{\psi}\right)_{A a \alpha}\left(\tilde{D}_{j}^{(p)} \tilde{\psi}\right)_{B b \beta}\left(\tilde{D}_{k}^{(p)} \tilde{\psi}\right)_{C o r}$

Extension to $q 9 \mathrm{q} \overline{\mathrm{q}} \mathrm{q}$

J	$n_{G_{1}}^{J}$	$n_{G_{2}}^{J}$	n_{H}^{J}
$\frac{1}{2}$	1	0	0
$\frac{3}{2}$	0	0	1
$\frac{5}{2}$	0	1	1
$\frac{7}{2}$	1	1	1
$\frac{9}{2}$	1	0	2
$\frac{11}{2}$	1	1	2
$\frac{13}{2}$	1	2	2
$\frac{15}{2}$	1	1	3
$\frac{17}{2}$	2	1	3

a

Low-lying Baryon Spectrum

A lattice theorist's view

The nucleon spectrum as seen on the lattice!

- Challenges/opportunities:
- Compute excited energies
- Compute decays
signal-to-noise $\simeq e^{-\left(m_{H}-\frac{3}{2} m_{\pi}\right) t}$

Anisotropic: $a_{t}<a_{s}: \exp \left(-m a_{t} t\right)$

Resonance Spectrum - Quenched

- Demonstration of our ability to extract nucleon resonance spectrum
- Hints of patterns seen in experimental spectrum
- Methodology central to remainder of project
- Do not recover ordering of P_{11} and S_{11}

Resonance Spectrum - Nf=2

$\mathrm{N}_{\mathrm{f}}=2$: Hadron Spectrum Collab., Phys.Rev.D79:034505 (2009)

- First identification of spin-5/2 state in LQCD

Little evidence for multi-particle states

Roper Resonance - I

Roper (1440): lightest positive parity excitation of the nucleon lighter than the $\mathrm{N}(1535)$ negative-parity excitation. Hard to reconcile with constituent quark model.

Mahbub et al., arXiv:0910:2789

Two quenched calculations observe light Roper

Roper from Amplitude analysis

Reaction model developed to analyse pion-nucleon reaction data to $\mathrm{W}=2$ GeV , and pion production data from Jlab.
Analytic continuation method to extract parameters of nucleon resonances within EBAC dynamical coupled-channel model.

Juelich-DCC; Roper generated dynamically
Re E (MeV)
Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL (2010) to appear

Challenges

- Lattices with two light and strange quark
- Identification of spin
- Seeking two-particle states in spectrum of energies region where states unstable.

Anisotropic Clover Generation - I

- "Clover" Anisotropic lattices $a_{t}<a_{s}$: major gauge generation program under INCITE and discretionary time at ORNL designed for spectroscopy

Challenge: setting scale and strange-quark mass

Express physics in (dimensionless) (l,s) coordinates

H-W Lin et al (Hadron Spectrum Collaboration), PRD79, 034502 (2009)

Anisotropic Clover - II

$\mathbf{N}_{\mathrm{f}}=\mathbf{2 + 1}$ Hadron Spectrum: NN Leading Order Extrapolation

Jefferson Lab

Discovering the continuum quantum numbers: low-lying meson spectrum

Identification of Spin - I

- We have seen lattice does not respect symmetries of continuum: cubic symmetry for states at rest

Problem: requires data at several Lattice spacings - density of states in each irrep large.

Solution: exploit known continuum behavior of overlaps

a

- Construct interpolating operators of definite (continuum) JM: $\mathrm{O}^{J M}$

$$
\langle 0| O^{J M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{J} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

- Use projection formula to find subduction under irrep. of cubic group

$$
\begin{aligned}
O_{\Lambda \lambda}^{[J]}(t, \vec{x}) & =\frac{d_{\Lambda}}{g_{O_{h}^{D}}} \sum_{R \in O_{h}^{D}} D_{\lambda \lambda}^{(\wedge) *}(R) U_{R} O^{J, M}(t, \vec{x}) U_{R}^{\dagger} \\
& =\sum_{M} S_{\Lambda, \lambda}^{J, M} O^{J, M}
\end{aligned}
$$

Identification of Meson Spins

Hadspec collab. (dudek et al), 0909.0200, PRL
Overlap of state onto subduced operators

$$
\langle 0| O^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z_{J} \delta_{J, J} \delta_{M, M^{\prime}}
$$

$$
\langle 0| O_{\Lambda, \lambda}^{J}\left|J^{\prime}, M^{\prime}\right\rangle=S_{\Lambda, \lambda}^{J, M^{\prime}} Z_{J} \delta_{J J^{\prime}}
$$

$N f=3$ Spectrum

Dudek et al. (HadSpec Collab), in preparation
Exotic quantum numbers

Nf = 2 + 1 Spectrum

Spectrum of light isovector mesons: $\mathrm{m}_{\pi}=520 \mathrm{MeV}$

Whence the multi-hadrons?

Non-interacting two -particle energies:
volume-dependent for
P-wave

Quark bilinears insensitive to mult-hadron states

Low-lying Exotic Spectrum

High-precision calculation of mesons spectrum, and those with exotic

HadSpec Collaboration (J. Dudek et al.), preliminary

Multi-hadron States and Strong Decays

See also talk of Nilmani

Jefferson Lab

Multi-hadron Operators

Usual methods give "point-to-all"

Strong Decays

Thanks to Jo Dudek

- In QCD, even ρ is unstable under strong interactions resonance in $\pi-\pi$ scattering (quenched QCD not a theory won't discuss).
- Spectral function continuous; finite volume yields discrete set of energy eigenvalues

Momenta quantised: known set of free-energy eigenvalues

$$
E_{n}=2 \sqrt{m_{\pi}^{2}+\left(\frac{2 n \pi}{L}\right)^{2}}
$$

Strong Decays - II

- For interacting particles, energies are shifted from their freeparticle values, by an amount that depends on the energy.
- Luscher: relates shift in the free-particle energy levels to the phase shift at the corresponding E.

Breit-Wigner fit
CP-PACS, arXiv:0708.3705

$$
\delta E(L) \leftrightarrow \delta(E)
$$

EM Properties of Excited States

Example: Single-pion photoproduction

Radiative transition amplitudes

Example: Photoproduction at GlueX Axial-vector Couplings?

Anatomy of a Calculation - I

- Lattice QCD computes the transition between isolated states

Isovector Form Factor

J.D.Bratt et al (LHPC), arXiv:0810.1933

Euclidean lattice: form factors in space-like region

Extension to higher \mathbf{Q}^{2}

EM Properties of Delta

Alexandrou et al., PRD79, 014509 (2009)

Electric form factor

$$
\begin{aligned}
\rho_{T s_{\perp}}^{\Delta}(\vec{b}) \equiv & \int \frac{d^{2} \vec{q}_{\perp}}{(2 \pi)^{2}} e^{-i \vec{q}_{\perp} \cdot \vec{b}} \frac{1}{2 P^{+}} \\
& \times\left\langle P^{+}, \frac{\vec{q}_{\perp}}{2}, s_{\perp}\right| J^{+}(0)\left|P^{+},-\frac{\vec{q}_{\perp}}{2}, s_{\perp}\right\rangle
\end{aligned}
$$

$$
Q_{s_{\perp}}^{\Delta} \equiv e \int d^{2} \vec{b}\left(b_{x}^{2}-b_{y}^{2}\right) \rho_{T s_{\perp}}^{\Delta}(\vec{b}) .
$$

Nucleon Radiative Transition - I

Jefferson Lab
Thomas Jefferson National Accelerator Facility
(8) ISA

Spectrum and Properties of Mesons in LQCD

Initial studies in charmonium

J Dudek, R Edwards, C Thomas, Phys.
Rev. D79:094504 (2009).

Use of variational method, and the optimized meson operators, to compute radiative transitions between excited states and exotics.
considerable phenomenology developed from the results - supports non-relativistic models and limits possibilities for form of excited glue

Radiative width of hybrid comparable to conventional meson - important for GlueX

HP15

Conclusions

- Lattice calculations evolving from studies of properties of ground-state hadrons to those of resonances
- Lattices with correct spectrum of flavors
- Variational method to precisely determine energies
- Identification of spin both for mesons and for baryons
- New correlator construction methods: many operators, high precision
- Properties of lowest-lying resonances studied
- Delta form factor and charge distribution
- "Roper" transition form factor
- Radiative transitions between mesons
- Challenges:
- Identifying the multiparticle states
- Entering regime of strong decays
- Transition Form Factors at higher Q^{2}
- Mapping to Chiral Perturbation Theory

$\mathrm{N}-\mathrm{\Delta}$ Transition Form Factor - I

- Transition between lowest lying $\mathrm{I}=3 / 2, \mathrm{~J}=3 / 2(\Delta)$, and $\mathrm{I}=1 / 2, \mathrm{~J}=1 / 2$ (N)
- Comparison between different lattice calculations and expt.
- Milder \mathbf{Q}^{2} dependence than experiment but
- Quark masses corresponding to pion masses around 350 MeV
- Q^{2} range up to around $2 \mathrm{GeV}^{2}$

Alexandrou et al, arXiv:0710.4621

N- Δ Transition Form Factor - II

Delta Form Factors

Chiral calculations

Pascalutsa, Vanderhaeghen (2004)Thomas, Young (...)

Interpretation of Parameters

Julia-Diaz et al., Phys.Rev. C75 (2007) 015205

Comparison of LQCD, EFT + expt: lattice QCD can vary quark masses

Roper Resonance

- Bayesian statistics and constrained curve fitting - Used simple three-quark operator

Dong et al., PLB605, 137 (2005)

Borasoy et al., Phys.Lett. B641 (2006) 294-300

Axial-vector Charges

- The axial-vector charges $g_{\mathrm{A}}{ }^{\mathrm{N} 1} \mathrm{~N} 2$ can provide additional insight into hadron structure
- Recent calculation of axial-vector charges of two lowest-lying $1 / 2$ states, associated with $N(1535)$ and $N(1650)$.

Takahashi, Kunihiro, arXiv:0801.4707

Consistent with NR quark model

Roper Resonance

- Bayesian statistics and constrained curve fitting - Used simple three-quark operator

Dong et al., PLB605, 137 (2005)

Borasoy et al., Phys.Lett. B641 (2006) 294-300

Correlation functions: Distillation

- Use the new "distillation" method.

Eigenvectors of
\downarrow Laplacian

- Observe

$$
L^{(J)} \equiv\left(1-\frac{\kappa}{n} \Delta\right)^{n}=\sum_{i=1} f\left(\lambda_{i}\right) v^{(i)} \otimes v^{*(i)}
$$

- Truncate sum at sufficient i to capture relevant physics modes we use 64: set "weights" f to be unity
- Meson correlation function

$$
C_{M}\left(t, t^{\prime}\right)=\langle 0| \bar{d}\left(t^{\prime}\right) \Gamma^{B}\left(t^{\prime}\right) u\left(t^{\prime}\right) \bar{u}(t) \Gamma^{A}(t) d(t)|0\rangle
$$

- Decompose using "distillation" operator as
M. Peardon et al., arXiv

$$
C_{M}\left(t, t^{\prime}\right)=\operatorname{Tr}\left\langle\phi^{A}\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right) \Phi^{B}(t) \tau^{\dagger}\left(t^{\prime}, t\right),\right\rangle
$$

:0905.2160
where

$\Phi_{\alpha \beta}^{A, i j}$	$=v^{*(i)}(t)\left[\Gamma^{A}(t) \gamma_{5}\right]_{\alpha \beta} v^{(j)}\left(t^{\prime}\right)$
Perambulators $\longrightarrow \tau_{\alpha \beta}^{i j}\left(t, t^{\prime}\right)$	$=v^{*(i)}\left(t^{\prime}\right) M_{\alpha \beta}^{-1}\left(t^{\prime}, t\right) v^{(j)}(t)$.

Distillation Results

Nucleon Variational Analysis

ρ Variational Analysis
Errors < 3\%

Overall momentum 0 Basis: pairs of back-to-back operators at momentum \boldsymbol{p}

